
2022/23

Generating Signed Distance Fields

from Triangle Meshes using Vulkan

Compute Shaders

William Whitehouse

Supervisor: Dr. Thomas Bashford-Rogers

Department of Computer Science and Creative Technology

University of the West of England

Coldharbour Lane

Bristol BS16 1QY

Abstract

This project aims to explore various techniques at computing signed distance fields from triangle meshes
in C++ and using the Vulkan graphics and compute API. Voxel grids are chosen as a method where each
cell stores its distance to the mesh, which paired with the jump flooding algorithm allows for rapid
generation of under a second on meshes that contain over 14K triangles. Binary Space Partitioning is
explored, with the use of different types of partitioning planes and ways to render the tree using

raymarching. This approach was found to be very poor regarding generation and runtime performance, but
offered perfect accuracy compared to the voxel grid.

Keywords: signed distance field, triangle mesh, raymarching, vulkan, c++

2022/23

William Whitehouse

2

Brief Biography

I have a strong interest in low-level engine programming and graphics. This project explores representing
meshes using distance fields and their rendering within a custom C++ engine. I've gained knowledge
about frequently overlooked yet crucial engine systems required for real-time applications, such as games,

and have become proficient in using the Vulkan graphics API. There's much more to learn in this area, and
even after this project ends, I'm eager to continue exploring new techniques and methods.

Portfolio: https://williamwhitehouse.dev/

How To Access The Project

The project can be accessed via this repository: https://github.com/WSWhitehouse/CCTP-Project

Please follow the getting started guide in the README to ensure the project is cloned properly and correct
versions of the required software is installed – download links are provided in the README file. The project

contains multiple branches to showcase the different approaches that were explored during development.

The vendor folder contains code from third parties, the src folder contains all the C++ source files for this
project. Any code that is borrowed from other authors is marked accordingly.

Showcase Video

https://www.youtube.com/watch?v=vs0w3iPgb40

1. Introduction

This project aims to explore various techniques
of representing a triangular mesh as a Signed
Distance Field (SDF). These techniques will be

compared in terms of efficiency, performance,
and memory usage.

Although meshes are the primary way games
visually represent objects, they may not be
suitable for various technical situations,
particularly those where an SDF would be more
appropriate. Having a performant and memory
efficient SDF representation of the mesh could
result in greater usage within games.

Distance fields and implicit surfaces are
intriguing because they can undergo countless
mathematical operations to manipulate them in
space, which includes twisting, blending, and
applying n-dimensional transformations. So far,

these operations are primarily applied to
primitives. However, representing a mesh as a

distance field may enable these interesting
operations to be performed on a complex shape.

To render the generated distance fields, the
raymarching rendering process will be
implemented using the Vulkan API. Optimisations
to raymarching will be employed to ensure high

framerates and real-time rendering of the
distance fields.

1.1 Key Deliverables

• Program to generate SDFs from triangle
meshes.

• Renderer written in C++ using the Vulkan
API to showcase the generated distance

fields.
• A report outlining the research,

implementation processes, key findings,
evaluation, and future work.

1.2 Project Objectives

Must:

• Volumetric raymarching renderer written
using the Vulkan graphics API.

• Triangle mesh to SDF generation
application.

Should:

• Explore different ways of representing the
distance field.

• Implement, and compare different SDF to
mesh generation methods.

Could:

• Support different types of meshes (i.e.
open and self-intersecting).

https://williamwhitehouse.dev/
https://github.com/WSWhitehouse/CCTP-Project
https://www.youtube.com/watch?v=vs0w3iPgb40

2022/23

William Whitehouse

3

2. Literature Review

2.1 Vulkan Graphics API

Vulkan is an API designed for “explicit control of
low-level graphics and compute functionality”

(The Khronos Group, 2022) allowing for efficient
access to GPU resources and rendering
capabilities with low overhead.

The official specification is a guide written by
many contributors that outlines best practices
and correct usage of the Vulkan API (The
Khronos Group, 2022). It is updated regularly

and is highly relevant when developing an
application with Vulkan. Updates to the
specification are managed through pull-requests

and issues on the Vulkan-Docs GitHub (The
Khronos Group, 2022), meaning the information
must be officially approved and accurate.

Online guides such as the “Vulkan Tutorial”
(Overvoorde, 2016) and “VkGuide” (Blanco, n.d.)
give a general overview and example C++ code
for getting started. The “Vulkan Programming
Guide” (Sellers & Kessenich, 2016) is a book
written by a Vulkan specification lead developer,
which gives in-depth insight into the more

complicated aspects of Vulkan, in contrast with
the online guides.

2.2 Signed Distance Fields

An SDF returns the minimum distance to a

surface given any point in space (), with the
sign indicating whether the point is inside or
outside the object (Jones, et al., 2006), as shown

in Equation 1; where is the function that
returns the distance to the SDF.

Equation 1 – SDF function.

Inigo Quilez’s website (Quilez, n.d.) has been the
primary resource for understanding SDFs. His
blog contains a large collection of implicit SDF
primitives, with code examples available on

ShaderToy (Quilez, 2013) (see Figure 1). While
the blog may contain some potential bias, it is
challenging to argue with the results as an open-
source example is available. Additionally, due to
Quilez’s impressive employment history, where
he worked on the procedural sets at Pixar
Animation Studios, there is a level of trust in the

information he provides regarding SDFs.

2.3 Raymarching

Raymarching is a ray traversal “technique for
rendering implicit surfaces using geometric

distance” (Hart, 1995). Hart’s article describes a
ray being projected from the camera position

into the scene. The ray moves incrementally,
based on the distance from all objects in the
scene, ensuring it can safely move without
intersecting a surface (Hart, et al., 1989). Once
the distance approaches zero, it is considered a
hit. Hart’s publications are peer-reviewed and
heavily cited by other relevant sources.

Figure 2 shows the algorithm where two rays are
fired from the left side of the image (Hart, 1995).
Spheres represent the distance at each step
along the ray. This is repeated until the ray hits a
surface (top ray) or reaches a max iteration

count / maximum distance (bottom ray).

2.4 Computing Signed Distance Fields

Payne & Toga (1992) use a 3D voxel grid to store

precomputed mesh distances. They outline a
naïve implementation, where each cell iterates

through all the triangles in a mesh and takes the
minimum distance. The paper suggests some
improvements, such as organising the mesh
hierarchy before computing the distances (Payne
& Toga, 1992). Wald, et al. suggests organising
the voxel grid using a K-Dimensional tree which
results in highly efficient ray traversal during

rendering (Wald, et al., 2005).

A Binary Space Partitioning (BSP) tree can
efficiently represent the distance field and
“adapts very well to the shape of the underlying
surface” (Wu & Kobbelt, 2003). The mesh is
recursively split into smaller pieces, for each

piece the distance is approximated and an error

Figure 1 - Raymarching Primitives on
ShaderToy (Quilez, 2013)

Figure 2 – Raymarching two rays (Hart, 1995). One

hits the surface (top), one misses (bottom).

2022/23

William Whitehouse

4

is estimated. If the error is above a threshold the
model is split again. Another paper found similar
results, but it was noted that the algorithm takes
a while to generate and is not suitable for larger

data sets (Fryazinov, et al., 2011).

Ensuring the accuracy of the mesh distance field
is important. Bærentzen, et al. discusses the use
of a pseudonormal which is a “weighted sum of
the normals on incident faces” (Bærentzen &
Aanæs, 2005). When generating the sign of a
distance field, the face normal of the triangle is

used, but this normal may break down near an
edge or vertex. The pseudonormal allows the
normal to be calculated more accurately and the
authors provide mathematical proof in another

paper (Bærentzen & Aanæs, 2002).

In his thesis, Zeng proposes a different approach

where he investigates the use of an Artificial
Neural Network (ANN) and a Generative
Adversarial Network (GAN) to generate an SDF,
which he compares to voxel grid-based methods
(Zeng, 2018). It concludes that the GAN was the
best type of network to generate a distance field.

Further research has trained GANs on voxel grids

and point clouds, successfully generating shapes
that include intricate details such as “thin chair
legs” and “precise modelling of an aeroplane tail”
(Kleineberg, Fey, & Weichert, 2020).

DeepSDF employs a machine learning approach

which predicts the SDF value at a given query
position (Park, Florence, Straub, Newcombe, &

Lovegrove, 2019). Their method also preserves
oriented surface normals which provides more
visually accurate results.

Wang et al. developed a Signed Distance Map
Neural Network (SDMNN) that rapidly produced
an SDF (Wang, et al.). They compared their

approach to other machine learning methods and
found it to be faster. However, they also found it
did not scale well to larger data sets as the
number of SDMs would grow quadratically with
the number of shape parameters.

3. Research Questions

Q1. How can SDFs be generated from triangle

meshes, considering the trade-off between
accuracy, performance, and memory usage?

Investigate various techniques for creating
SDF representations of a mesh. Assess the
precision, runtime performance, and memory
consumption of each method to determine the
most optimal approach.

Q2. How can the performance of raymarching be
optimised?

Explore and evaluate techniques for improving
raymarching performance in real-time Vulkan
applications.

Q3. Can techniques such as parallelisation be
used to speed up SDF computation?

Utilise and examine the use of Vulkan
compute shaders to improve generation times

for the various SDF computation approaches.
Additionally, explore CPU multi-threading
techniques that could improve the
computation speed.

4. Research Methods

The research for this project was secondary,
quantitative research, which includes using

papers, reports, and presentations from various
academic sources. Google Scholar and the UWE

library were the key resources that enabled this
type of research. Primary research is not possible
in the timeframe allocated as this project is of a
technical nature.

The topic area for this project is extensively
covered in academic literature, which was used
throughout the project for guidance. Initially,
research started with general search terms
related to the topic area. As different methods
were identified, the terms became more focused
to concentrate on specific techniques.

This project also involves creating a renderer
using the Vulkan API, in which primary sources
of information include forums, blog posts and the
official specification. However, potential biases in

these sources require careful analysis to ensure
the information's accuracy and reliability.

Online question and answer sites like Stack

Overflow were used in some instances. These
sites offer well-defined answers and insights from
a range of people, often supported by credible
sources. Experts can easily share their
knowledge; however, these sites shouldn't be
primary research sources due to potential biases

and inaccuracies. In this project, they provided a
basic understanding of a subject area, followed
by more accurate research to back up claims.

5. Ethical & Professional Principles

This project generates no negative impacts, no
human participants were involved during the
research or development phase and no personal

data is being held.

There are some ethical and legal factors that
must be considered. Throughout development
different meshes were acquired for testing, these
are obtained legally, with appropriate credit
given to the authors. Any third-party code and
libraries are used in accordance with their

respective licenses.

All assets used throughout the project can be
seen in Appendix: Assets & Third-Party Code.

2022/23

William Whitehouse

5

6. Research Findings

Games require maximum performance and
reliable framerates, using Vulkan ensures low
overhead from the graphics driver which allows

the program to run at its fastest. Furthermore,
some computations can take advantage of
Vulkan’s compute functionality which will further
increase performance.

Research indicates that implementing a Vulkan
renderer can be challenging. However, the online
guides provide a decent foundation to build upon

throughout the project’s development.

SDFs are widely used in games for collision
detection, soft shadows, and ambient occlusion.

Unreal Engine 5 employs distance fields for all
the above; as they lead to faster computation
during collision testing and more realistic and

faster results with soft shadows (Epic Games,
2021); see figure 3 for a comparison.

Keinert et al.'s "Enhanced Sphere Tracing"
(2014) presents an improvement to the
raymarching algorithm originally proposed by
Hart, called Over-Relaxation. This technique
overshoots the distance when marching the ray.

If the distance overlaps with the previous
iteration’s distance, it is safe to assume the ray
can safely pass through without intersecting a
surface. If it does not overlap, the algorithm
returns to Hart’s standard implementation.

Figure 4 provides an illustration of the proposed
technique (in red), where the yellow sphere

represents where over-relaxation fails and
returns to the standard algorithm (in blue).

Coarse Cone Tracing is used to approximate the
surface of the SDF and speed up raymarching,
which was used in the game Claybook (Aaltonen,
2018). Cones, which act as “growing spheres”

are marched over multiple pixels in a pre-pass;
each pixel’s ray starts from the end of the cone
rather than the camera’s position (see figure 5).
This reduces the number of steps each ray must
make through empty space.

SDFs are typically defined as implicit surfaces,
meaning an equation defines the object rather

than any physical representation, such as a mesh
(Hart, 1995). Real time representation of a
triangular mesh as a distance field poses an

interesting problem; the minimum distance to all
the triangles must be known from any point in
space. Doing this calculation for every triangle
on each ray step, pixel and frame is extremely
expensive.

It is clear from the research that alongside
raymarching optimisations either precomputing

the mesh distances or using a heirarchial data
structure is vital for maintaing high frame rates.

The voxel grid approach contains a variety of
techniques and data structures to improve the

accuracy, efficiency, and memory usage. The
naïve generation approach outlined by Payne &

Toga (1992) is highly parrallelisable, making it
an ideal candidate for a compute shader.

Wald, et al.’s use of a K-Dimensional tree could
increase voxel traversal speed. However, it was
aimed at the CPU and used SIMD to speed up the
algorithm, but they note that it “should similarly
benefit GPU-based ray tracing approaches”

(Wald, et al., 2005).

Zeng’s thesis findings show that a neural
network can successfully approximate an SDF
with only minor errors. Furthermore, the GAN
takes up less than 0.1% memory than the voxel
gird, and even less memory than the triangle

mesh itself shown in figure 6 (Zeng, 2018).

Figure 3 – Shadows using a traditional shadow map
(left), and distance fields (right) (Epic Games, 2021).

Figure 5 – Coarse Cone Tracing. Cones are marched at
a lower resolution, with individual pixel rays beginning

where they end; this reduces the empty space the
individual rays must march through.

Figure 4 – Comparison between the standard
raymarching algorithm (top) and over-relaxation
(bottom) (Keinert, Schafer, Korndorfer, Ganse, &

Stamminger, 2014)

2022/23

William Whitehouse

6

Neural Networks also rapidly generate an SDF,
with the SDMNN approach taking 0.2 seconds to
generate compared to the 10.7 seconds the grid-
based approach took (Wang, et al.). However, it

is unclear what optimisations, if any, where
made to the grid-based method.

Figure 6 – Size comparison of a mesh, voxel grid SDF

and a GAN approximate of an SDF (Zeng, 2018).

7. Practice

This project was written in C++ and used the C
bindings to interface with the Vulkan API. To
begin with, a small rendering engine was created
with a raymarching pipeline that renders SDFs.
The pipeline consists of a vertex shader that
draws a fullscreen quad and a fragment shader

that performs the raymarching algorithm; all
shaders are written in GLSL.

7.1 Raymarching Pipeline

The vertex stage is optimised by using a single
triangle to cover the screen rather than the
typical two-triangle quad. This saves one vertex

shader invocation and reduces the number of

fragment shader calls. In a two-triangle quad,
the shared edge can invoke the fragment shader
multiple times for the same pixels without
performing any additional work, as GPUs invoke
the stage in 2x2 pixel size blocks. This is known
as helper invocations or helper pixels (Giesen,

2011). To match the screen rather than the
triangle, the UVs are created using Equation 2;

where represents each triangle vertex in clip
space.

Equation 2 – Creating screen space UVs from a
triangle vertex position in clip space.

A ray per-pixel is created, and the raymarching
algorithm is performed, as shown in Code Listing
1. Note that the RaymarchMap function (line 10)

is defined elsewhere and returns the minimum
distance to all objects in the scene from the
current ray position (pos). This function is

different for each SDF generation approach and

will be discussed later alongside each
implementation.

Code Listing 1 – Raymarching algorithm implemented
in the fragment shader (GLSL).

The raymarch algorithm was optimised using the
over-relaxation method described by Keinert et
al (2014). This approach makes some changes so

that the ray oversteps by a relaxation value ()

where . To ensure the ray does not pass
through or overstep a surface, the bounding
sphere on the ’th iteration must overlap the

previous step’s () sphere; as shown in
Equation 3, where is the sphere step length

from an iteration. When the spheres don’t
overlap, it falls back to the algorithm described in
Code Listing 1.

Equation 3 – Check for overlapping bounding spheres
in the Over-Relaxation raymarching optimisation.

2022/23

William Whitehouse

7

7.2 SDF Voxel Grid

Following the implementation of raymarching,
the next step is to explore SDF generation. This
approach is where each cell in a 3D voxel grid

() holds the minimum distance to the surface
of an object.

The voxel grid is a 3D image allocated on the
GPU from a device local memory heap for
maximum read/write performance in shaders and

initialised to F32_MAX (the maximum number a

floating-point value can represent). The image
uses the VK_FORMAT_R32_SFLOAT format,

allowing each cell to hold the signed distance at
normal floating-point precision. Half precision is

preferable as it would significantly reduce the
size of voxel grid memory without a visually
perceivable difference, but the required SPIR-V
and Vulkan extensions for 16-bit floating point
atomics are not supported on the author's
graphics drivers so was not further investigated.

To compute the distance, each cell ()
iterates through the triangles in the mesh () to
find its nearest triangle and stores the distance
to this triangle as its value:

Equation 4 – Calculating the minimum distance to a
collection of triangles in a mesh for a single voxel.

When comparing the distance to each triangle,
the absolute value of the distance is used. This is
because the nearest distance to the triangle,

regardless of whether it is in front or behind it, is
needed. However, the signed value is assigned to
the cell so that the inside of the object is
maintained as negative.

Figure 7 showcases the generated SDF voxel
grids obtained using the Stanford Bunny as the

input mesh. The voxel grid method also enables

the use of distance field operations, which allow
for smooth blending between surfaces as shown
in figures 7(b) and 7(c). Figure 8 demonstrates
the twist operation.

Figure 8 – Low-poly torus mesh as an SDF voxel grid
(2563 resolution). A twist operation has been applied to
the torus and a smooth minimum blend has been used

between the torus and a red sphere.

This brute force method has a quadratic time
complexity. Meaning increasing the number of
voxels or triangles in the mesh will result in a

significantly longer generation time.

Initially, the computation of the voxel grid was
performed on the CPU with each cell computing
its distance consecutively. However, since each
cell is computed independently, it is an ideal
algorithm for parallel execution in a compute
shader, which is officially known as an

embarrassingly parallel problem.

Compute shaders are programs that take
advantage of the hundreds to thousands of cores
that are on a GPU. They operate on the Single
Instruction Multiple Data (SIMD) memory model,
where the same code is executed on different
data. In this case, the same distance

computations are performed on the mesh but on
different cells from within the voxel grid.

Figure 7 – Stanford Bunny mesh represented as an SDF using a voxel grid (2563 resolution). Subfigures
(b) and (c) have a smooth minimum operation applied between the SDF voxel grid and a red sphere.

(a) (b) (c)

2022/23

William Whitehouse

8

A Vulkan compute pipeline is created that takes
three read only input buffers (bindings 0, 1, & 2),
and a read/write image3D uniform for the voxel

grid (binding 3). As seen in Code Listing 2, the
buffer at binding 0 contains information about

the voxel grid and the mesh. Binding 1 and 2
contain the vertex and index arrays respectively,
which must be in their own separate buffers as
their length is not known at compile time. With
the uploaded data, the compute shader is run on
each cell in parallel and performs the same
distance computation as seen in Equation 4.

Code Listing 2 – Voxel grid compute shader

generation input buffer (GLSL).

The mesh indices could be in either a 32 or 16-

bit format. To make the compute shader inputs

simpler, it only accepts 32-bit indices. But two
16-bit indices can be encoded in a single 32-bit
integer and later unpacked in the shader; as
shown in Code Listing 3. The branch checking for
index format (line 3) will not affect performance

as all threads will be following the same branch;
ensuring the lock-step parallelism stays in sync.

Code Listing 3 – Get an index, possibly unpacking a

32-bit integer into two 16-bit indices (GLSL).

During the distance computation, the triangles
are transformed by a scaling factor and are offset
within the voxel grid, as seen in Code Listing 4.

This is to ensure that the SDF grid represents the
same size as the original mesh, and to centre it
to fully utilise the cells in the grid. Without these
transformations, the mesh won’t fill the grid to
its maximum extents, or the mesh could extend

out of the grid as seen in Figure 9.

Code Listing 4 – Calculating distance to triangle on

each voxel cell. Transforming each triangle to
 ensure it is inside the grid bounds.

Figure 9 – Low-poly Stanford bunny as an SDF voxel
grid without triangle transformation. Ears and tail are
cut off as the triangles are outside the grid bounds.

2022/23

William Whitehouse

9

To speed up voxel grid computation, the jump
flooding algorithm was implemented. This
changes the compute shader where each
invocation is at a triangle perspective rather than

a cell. An Axis-Aligned Bounding Box (AABB) is
created that encapsulates the triangle, then
iterates through every cell that overlaps the box
and calculates its distance, as seen in Code
Listing 5. It’s important that atomics are used to
load and store distances to the image3D as

multiple triangles may overlap cells leading to
threads accessing the image simultaneously.

Code Listing 5 – Create a triangle AABB, go
through all overlapping voxel grid cells and

 compare distances (GLSL).

A second compute shader is then dispatched on

every cell to check the neighbouring cells in the
four cardinal directions and diagonally (multiplied
by a step length) for their distances. The

algorithm then selects the minimum distance
among the neighbouring cells and adds the
distance between the current cell and the

neighbour to ensure an accurate distance from
the current cell position.

The jump flooding algorithm runs iteratively and
allows each cell to pass on its distance to other
cells in the grid (Rong & Tan, 2006). Any cells
that are within a certain distance to the original
triangles are treated as seeds and therefore not

updated. The number of iterations is calculated
as the of the maximum dimension of the
grid, as outlined by Rong and Tan (2006). The
start of each iteration also defines the step
length, which is simply the number of iterations

minus (being the current iteration).

Rendering the SDF voxel grid is simple, as the
distance has been precomputed it involves
looking up the valued stored in the cell the ray is
currently positioned in. However, the ray position

must be transformed into the local space of the
voxel grid to calculate the correct voxel index; as
seen in Code Listing 6.

As the grid is stored as an image3D, the

raymarching shader can sample the grid as a
texture through an image sampler. The sampler
has the VK_FILTER_LINEAR filter set, which is

used to interpolate the distance values between
voxels automatically, resulting in a smooth SDF.

Code Listing 6 – RaymarchMap function for rendering

the SDF voxel grid (GLSL).

Figure 10 – Stanford bunny SDF generated using the
jump flooding method.

2022/23

William Whitehouse

10

7.3 Binary Space Partitioning Tree

A Binary Space Partitioning (BSP) tree is a data
structure that recursively subdivides space into
two sets using dividing (or partitioning)

hyperplanes (Ericson, 2005). During rendering
the ray can traverse the tree and calculate the
distance to the nearest point on the surface of
the mesh. The KD-Tree used by Wald, et al.
(2005) is a type of BSP tree, where all the
dividing planes are aligned with the coordinate
axes.

The BSP Tree must be constructed from the
mesh on the CPU before it can be traversed
during raymarching. The steps to construct a BSP
tree are as follows:

1. Select a dividing plane.
2. Partition the geometry into two sets with

respect to the dividing plane.
3. Form or add to the tree using the two

newly created nodes.
4. Check the new nodes and recursively

subdivide again (go back to step 1) or stop
BSP tree generation based on some
heuristic.

The first step involves selecting a dividing plane
that splits the geometry into two sets. There are
two options when choosing a dividing plane:

• General Partitioning Planes subdivide the

geometry evenly and aim to produce a
well-balanced tree. This method allows for
even traversal through the tree no matter

what path the ray takes.
• Autopartitioning Planes use a section of the

geometry (i.e. a triangle) as the dividing
plane. This aims to divide the object from
empty space, which allows “early-outs”
during ray traversal.

Figure 11 shows the various approaches. With
subfigure 10(c) representing a hybrid approach,
which attempts to create a well-balanced tree
that still allows for “early-outs” during traversal
(Ericson, 2005).

Figure 11 – Various BSP tree partitioning plane
approaches. Subfigure (a) represents General planes,

(b) represents Autopartitioning planes, (c) represents a
mixture of both approaches.

General partitioning planes are created by
placing them at the centroid of all the vertices in
the current set and orienting them in the
direction of the largest variance. This ensures

that the plane is positioned evenly between all
vertices and divides the object equally. The
normal of the plane is determined by using the
eigenvector corresponding to the largest
eigenvalue of the vertices covariance matrix.

The covariance between two sets of values is
calculated using the following formula (Lanhenke,

2021):

Equation 5 – Calculate covariance between
two sets of values.

where is the number of vertices, and are
the ’th component values from the sets being

compared, and and are the means of the
respective sets.

The 3x3 covariance matrix () for the set of

vertices () is calculated as follows, using
Equation 5 to calculate the covariance between
each vertex component:

Equation 6 – Calculate the 3x3 covariance
matrix for a set of vertices.

Once the covariance matrix is constructed,
eigendecomposition is used to find the
eigenvalues and eigenvectors of the matrix.

An matrix is said to have an

eigenvector and corresponding eigenvalue
from an eigensystem in the following form (Van
Verth & Bishop, 2016):

Equation 7

We can solve for eigenvalues by rearranging

Equation 7; where is the identity matrix:

or

Equation 8

Zero vectors are not considered an eigenvector,
so Equation 7 only holds true if:

Equation 9

(a) (b) (c)

A B

C

A
B

C

A
B

C

D

E F

2022/23

William Whitehouse

11

When expanded out, Equation 9 is a polynomial
in of the ’th-degree called the characteristic
polynomial for , where its roots are the
eigenvalues. This means there are eigenvalues

for an matrix (Press, Teukolsky,
Vetterling, & Flannery, 2007). However, they
may not be distinct from one another; the same
eigenvalues from multiple roots are called
degenerate.

Typically, eigenvalues are solved using iterative
transformations, such as the Householder

method, or the / method. However, these
calculations are not numerically robust. Luckily,
in this case, Eberly provides a numerically robust
noniterative method for solving the characteristic

polynomial of a matrix that is faster than
the other methods. Equation 10 is the
expanded out characteristic polynomial for a

 matrix, where is the trace of the matrix
(Eberly, 2014).

Equation 10

Using as the input matrix () and solving
for the roots of this polynomial, as outlined in

Eberly’s paper (2014), gives the three
eigenvalues which can each be substituted in
Equation 8 to solve for eigenvector . Once the
eigensystems have been solved, the eigenvector

corresponding to the largest eigenvalue is chosen
as the dividing plane normal.

Autopartitioning planes are much simpler to

calculate. Firstly, the AABB that contains all the
vertices in the current set is found, and the
largest axis of the box is selected. Next, all
triangles in the mesh are tested against this axis
using a dot product. The triangle with a normal
facing closest to the axis is chosen as the
dividing plane. This approach finds a triangle

which divides the object from empty space the
most.

Once the plane has been chosen, the object must
be split into two sets. There are four ways a
polygon can be classified with respect to a plane

(Ericson, 2005):

1. Infront of the dividing plane.
2. Behind the dividing plane.
3. Straddling the dividing plane.
4. Coincident with the dividing plane.

Its relatively trivial to classify the triangles with
respect to the dividing plane. The signed distance
to the plane for each triangle vertex is calculated

(Quilez, n.d.); see Equation 11 where and is
the plane normal and position respectively, is
the triangle vertex.

Equation 11 – Calculate the signed distance
from a point to a plane.

If all three of the triangle vertices share the
same sign, it’s either in front (when distance is
positive) or behind (when distance is negative) of
the plane. If there is a mixture of positive and

negative signs, the triangle is straddling the
plane. The triangle is coincident if the distances
are all 0, but in practice this is rare and can be

safely ignored and act as if the triangle is either
in front or behind.

To solve the issue of straddling triangles, there
are two approaches. One approach splits the
triangle into two, and they are added to the

corresponding nodes with respect to the plane.
Another approach adds the triangles to both
sides, creating an overlap of the plane. Both

approaches were tried during the implementation
of the project. With the first approach being
dropped as it made the mesh harder to split.

Finally, the tree is built up from the nodes

recursively, with the leaf nodes containing a set
of triangles from the mesh. Each node is checked
against a heuristic to determine if the geometry
should be further split, in this case a maximum
triangle count.

Raymarching the BSP tree involves traversing the

tree at each ray step, which can be a slow
process and requires many tree traversals per
ray per frame. The tree is traversed to find a leaf
node, where the distance to each triangle in this

node is compared. Which is done until no more
leaf nodes are in the path of the ray.

To try and improve performance, an optimisation

to initially raytrace the tree and cache the closest
leaf node was added. An implementation outlined
in Wald’s thesis is used to traverse the tree using
raytracing (Wald, 2004). During raymarching,
the distance is computed from the singular leaf
node and therefore does not traverse the tree
again. However, this causes errors during

rendering as the ray will never check the
distances to other triangles in the mesh, which
may be closer.

Figure 12 – Low-poly sphere rendered
using an SDF BSP tree.

2022/23

William Whitehouse

12

8. Discussion of Outcomes

8.1 Evaluation

All performance results were captured on
hardware equipped with an Intel Core

i9-9900K CPU at 3.6GHz, 32GB RAM and an
Nvidia Titan X (Pascal) GPU with 12GB VRAM.

Figure 13 shows the graphed time for generating
an SDF voxel grid using the naïve and jump
flooding methods at different grid resolutions
from the Stanford bunny model (~14K triangles).
The naïve implementation generation time

rapidly increases as the resolution is doubled,
while the jump flooding approach remained
under one second. The jump flooding approach

will support higher resolution grids and could
theoretically perform this at runtime on dynamic
meshes every couple of frames.

Figure 13 – Time comparison between SDF voxel
grid generation methods.

The accuracy of SDF voxel grids relies on two

factors: the grid resolution and the size of the
input mesh. Lower grid resolutions may result in
“blocky” SDFs during rendering due to the fewer
cells storing the distance, as seen in Figure 14.

Figure 14 – Stanford bunny SDF grid at 323 resolution.

The grid is also scaled to the size of the mesh to
maximize cell usage. Therefore, smaller meshes
have smaller cell sizes than larger meshes,
meaning the same grid resolution covers a

smaller area and results in greater accuracy on
small meshes. These parameters need to be
adjusted for each mesh to achieve desirable
results. For instance, the visual difference
between the Stanford bunny at 2563 and 5123
resolutions are very minimal, as seen in Table 1.

The brute-force approach generally provides

more accurate distances compared to the jump
flooding method, especially with objects that
contain holes or are considered more complex.

Table 1 – Visual comparison between naïve

 and jump flooding voxel grid methods
with different grid resolutions.

 (Please zoom; images are high resolution)

Comparing the memory usage of different

resolutions is shown in Figure 15. The graph

indicates that smaller resolution grids (5123)
have a negligible impact on memory usage, but it
increases rapidly as the grid resolution is
doubled. A resolution of 20483, for example,
results in GPU memory usage above 32GB,
making it unsuitable for most consumer-grade

graphics devices1.

1 Please note that a resolution of 20483 was not tested due

to its high memory usage. The value presented in Figure
15 represents the calculated memory usage for an image
at that resolution, based on the other results.

2022/23

William Whitehouse

13

Figure 15 – Voxel Grid Memory Usage (in
Mebibytes) at different resolutions.

The BSP tree provides perfect accuracy for the
distance field as it uses the original triangles
from the mesh. This contrasts with the voxel grid
method where its accuracy is depended on the
grid resolution, as discussed earlier.

However, generation performance is very low.
The tree must be prebuilt but cannot take
advantage of compute shaders to speed up this
process, meaning it’s all done sequentially on the
CPU. Although, CPU multithreading could be
utilised after a split has been made – this is

discussed further in the following section.

Dealing with individual triangles that straddle the
dividing plane is not ideal. There isn’t a “good”
way to handle them; splitting the triangle into
two creates new triangles to deal with later
either during generation or to test against during
traversal. Adding the triangle to both sides of the

tree means higher memory usage as some
triangles are doubled and leads to the distance
computation being performed on the same
triangle. Both methods make building the tree
more complex, and in some situations means the
tree may never complete – in one instance it was
generating for a few hours and consumed over

97% of memory without completing.

Furthermore, larger meshes were practically
impossible to generate useful trees for with the
current system. As it’s possible to get stuck in
infinite loops when adding the same triangles to

both nodes. Which lead to only simple meshes
being generated with this method.

Runtime performance is particularly poor in
general with an average of 0.0498ms frame time,

there are a few main reasons that could be
behind this. Firstly, tree traversal for
raymarching is very slow; the tree must be
traversed for each point marched along the ray,

for each pixel for each frame. Secondly,
traversing a BSP tree causes a lot of branching,
which is extremely unforgiving for GPU

parallelism due to their lock-stepping thread
architecture.

Memory consumption is very high for BSP trees,
the triangle mesh must be maintained as well as

the BSP tree nodes and each leaf node indices.

8.2 Future Work

The jump flooding method for the SDF voxel grid
approach could be further improved. Currently,
it’s the fastest method for generating an SDF
representation of a mesh but is the least

accurate. Rong and Tan (2006) consider
accuracy in their paper and provide some
possible improvements that could be
implemented.

Memory usage of the voxel grid is also a major
topic of future work. Figure 16 shows the bounds
of the voxel grid; there is a lot of empty space,

and some cells store distances that aren’t
important. Employing a spatial data structure
should be explored, examples include a Sparse
Voxel Oct-tree or a VDB Tree which is highly
memory efficient and allows for an average O(1)

random access (Museth, 2013). Both data
structures only store data where it’s needed,
which significantly drops memory usage. In

hindsight, perhaps this should have been a major
direction of the project after seeing the speed
and accuracy of the voxel grid approach.

Figure 16 – SDF Voxel Grid bounds.

2022/23

William Whitehouse

14

Wald's thesis covers several optimisations for
BSP trees, including cache alignment and SIMD
traversal, which greatly improved rendering
efficiency for meshes. Wald also offers solutions

to keep threads in sync, which would help with
GPU parallelism. These improvements should be
applied to the current BSP tree implementation,
which has not yet been heavily optimised.

To further improve the BSP tree, tweaks to the
tree generation should be made. Currently, the
generated trees are very large and don’t

evaluate multiple dividing planes to find the most
efficient. During generation the process is only
utilising an average of 6.7% of the CPU,
implementing simple multithreading to split the

work between threads could improve
performance dramatically and utilise more CPU

cores. Theoretically, putting the first split nodes
onto their own thread would halve generation
time.

Furthermore, dealing with triangles makes the
tree awkward as some triangles overlap and
belong to multiple nodes which makes future
cuts almost impossible. A future direction could

be to explore point clouds; in-fact this was
started during project development.

Generating a point cloud from a mesh involves
randomly sampling a set of points from each
triangle using barycentric coordinates, as seen in

the following equation: being the computed
point on the triangle, and being the two

randomly generated values ().

Equation 12 - Randomly sample point on triangle.

Once a point cloud is generated, it can be built in

a similar manner to the triangle BSP tree.
However, since points are not connected by
edges like triangles, there is no need to split
them or place them on multiple nodes. This
makes the construction of the tree simpler and
potentially more efficient.

An alternate direction for this project would

involve the use of neural networks. These were a
key part of the project research, but never
implemented within this project. This approach
could result in minimal memory usage, which is a
major area which is lacking in the current
implementations, as the neural network would be
the only thing that must be stored once it has

been trained. It can also represent an SDF with
minimal errors (Zeng, 2018).

8.3 Discussion & Reflection

This project investigates the representation of
meshes as signed distance fields, through the
exploration of three methods, each with their

own pros and cons. SDFs are widely used in
game engines for various applications such as

collision detection and ambient occlusion (Epic
Games, 2021). While the methods explored in
this project provide fast and accurate
representations of meshes as SDFs, they also

require high memory usage, making them
impractical for real-world game engines in their
current state. Therefore, future work is required
to improve the memory efficiency of these
methods (as mentioned in section 8.2) to make
them more viable in game engines.

To date, SDFs are not commonly used as a

replacement for meshes in games, with only a
few recent games such as Claybook (Second
Order, 2018) utilising them. Within this game
only simple shapes are represented; see Figure

17. With new explorative techniques at
representing complex objects as SDFs, they

would become more popular in games. SDFs can
also provide unique shapes with the
mathematical operations, such as blending and
twisting. Additionally, their capability to
represent n-dimensional objects adds potential
for unique game mechanics in the future.

Figure 17 – Screenshot from Claybook (Second Order,
2018). A dynamic world sculpted entirely from SDFs.

Looking back at the originally proposed research
questions, various techniques were explored to
represent meshes as SDFs. Each of the methods
supported different levels of accuracy, runtime,
and generation performance, which addressed

the key point from Q1. However, reducing
memory consumption was not explored in any of
the proposed techniques, making it a crucial area

for future work.

Optimisations, specifically Over-Relaxation, was
implemented to improve raymarching
performance (Q2). Although, it’s unclear if this

technique had a big positive improvement on
performance. Other techniques, such as coarse
cone tracing, should be investigated to evaluate
their potential benefits for raymarching.

The project fully explored parallelism using GPU
compute shaders (Q3), which significantly

improved the speed of voxel grid generation and
enabled concurrent computation. Future work on
parallelism could involve the use of CPU
multithreading to speed up computations and the

exploration of SIMD and hardware intrinsics to
improve CPU performance.

2022/23

William Whitehouse

15

9. Conclusion & Recommendations

The jump flooding voxel grid proved to be the
strongest method among the implemented
approaches. It is very quick at generating the

SDF voxel grid and provides adequate accuracy
for most use cases (for example, ambient
occlusion). If higher accuracy is needed and the
generation process is not taking place on client
hardware, the brute force voxel grid approach is
recommended as it provides instantaneous
lookup speed at O(1), unlike the BSP tree which

requires traversal. The BSP tree is recommended

when perfect accuracy is essential and when
runtime performance is not a primary concern
(for instance, in non-real-time applications). But

a lot of time tweaking the parameters of tree
generation is needed to ensure the tree builds
properly. Ultimately, the choice between the
approaches will depend on the specific needs and

constraints of the application.

Although this project successfully implemented
these techniques, there is still room for
improvement and future work (as discussed in
section 8.2). This could include modifications to
the voxel grid data structure to improve memory

usage, as well as exploring alternate approaches
such as machine learning and neural networks.

The approaches explored allow for complex
objects to be represented as signed distance

fields and may allow more games in the future to
use them to represent objects instead of meshes.

In conclusion, this project successfully explored

various techniques for representing triangle
meshes as signed distance fields. Three working
methods were developed, each with a varying
level of accuracy, generation speed, and runtime
performance, that can be applied to different
needs and requirements.

10. References

Aaltonen, S. (2018, July 9). YouTube. Retrieved
from Digital Dragons 2018: Sebastian
Aaltonen - GPU based clay simulation and

ray tracing tech in Claybook:
https://www.youtube.com/watch?v=Xpf7
Ua3UqOA

Bærentzen, A., & Aanæs, H. (2002). Generating
Signed Distance Fields from Triangle
Meshes.

Bærentzen, A., & Aanæs, H. (2005). Signed

Distance Computation Using the Angle
Weighted Pseudonormal. IEEE
Transactions on Visualisation and

Computer Graphics, 11(3).

Blanco, V. (n.d.). VkGuide. Retrieved 11 21,
2022, from https://vkguide.dev/

Eberly, D. (2014). A Robust Eigensolver for 3 × 3
Symmetric Matrices.

Epic Games. (2021). Mesh Distance Fields.
Retrieved 10 17, 2022, from
https://docs.unrealengine.com/5.0/en-
US/mesh-distance-fields-in-unreal-
engine/

Ericson, C. (2005). Real Time Collision Detection.
Morgan Kaufmann.

Fryazinov, O., Pasko, A., & Aszhiev, V. (2011).

BSP-Fields: An exact representation of
polygonal objects by differentiable scale
fields based on binary space partitioning.
Computer-Aided Design, 43, 265-277.

Giesen, F. (2011, July 10). The ryg blog.
Retrieved from A trip through the
Graphics Pipeline 2001, part 8:
https://fgiesen.wordpress.com/2011/07/
10/a-trip-through-the-graphics-pipeline-
2011-part-8/

Hart, J. C. (1995). Sphere Tracing: A Geometric
Method for the Anti-Aliased Ray Tracing
of Implicit Surfaces. The Visual
Computer, 12.

Hart, J. C., Sandin, D. J., & Kauffman, L. H.
(1989). Ray Tracing Deterministic 3-D
Fractals. Computer Graphics, 23(3).

Jones, M. W., Bærentzen, J. A., & Sramek, M.
(2006). 3D Distance Fields: A Survey of
Techniques and Applications. IEEE
Transactions on Visualization and
Computer Graphics, 12(4), 581-599.

Keinert, B., Schafer, H., Korndorfer, J., Ganse,
U., & Stamminger, M. (2014). Enhanced

Sphere Tracing. Smart Tools and
Applications in Graphics.

Kleineberg, M., Fey, M., & Weichert, F. (2020).

Adversarial Generation of Continuous
Implicit Shape Representations.

2022/23

William Whitehouse

16

Lanhenke, M. (2021, December 27).
Implementing PCA From Scratch.
Retrieved from Towards Data Science:
https://towardsdatascience.com/impleme

nting-pca-from-scratch-fb434f1acbaa

Museth, K. (2013). VDB: High-Resolution Sparse
Volumes with Dynamic Tolopogy. ACM
Trans. Graph.

Overvoorde, A. (2016). Vulkan Tutorial.
Retrieved 11 19, 2022, from
https://vulkan-tutorial.com/

Park, J. J., Florence, P., Straub, J., Newcombe,
R., & Lovegrove, S. (2019). DeepSDF:
Learning Continous Signed Distance

Fields for Shape Representation.

Payne, B. A., & Toga, A. W. (1992). Distance
Field Manipulation of Surface Models.

Press, W. H., Teukolsky, S. A., Vetterling, W. T.,
& Flannery, B. P. (2007). Numerical
Recipes: The art of scientific computing.

Quilez, I. (2013). ShaderToy - Raymarching
Primitives. Retrieved 10 16, 2022, from
https://www.shadertoy.com/view/Xds3z
N

Quilez, I. (n.d.). Distance Functions. Retrieved
10 16, 2022, from
https://iquilezles.org/articles/distfunction

s/

Rong, G., & Tan, T.-S. (2006). Jump Flooding in
GPU with Applications to Voronoi
Diagram and Distance Transform.

Interactive 3D graphics and games, 109-
116.

Second Order. (2018, August 31). Claybook.
Second Order.

Sellers, G., & Kessenich, J. (2016). Vulkan
Programming Guide. Pearson Education.

The Khronos Group. (2022). Vulkan Docs.
Retrieved 12 01, 2022, from GitHub:
https://github.com/KhronosGroup/Vulkan

-Docs

The Khronos Group. (2022). Vulkan
Specification. Retrieved 11 25, 2022,
from

https://registry.khronos.org/vulkan/spec
s/1.2-extensions/html/vkspec.html

Van Verth, J. M., & Bishop, L. M. (2016).
Essential Mathematics for Games and
Interactive Applications.

Wald, I. (2004). Realtime Ray Tracing and
Interactive Global Illumination.

Wald, I., Friedrich, H., Marmitt, G., Slusallek, P.,
& Seidel, H.-P. (2005). Faster Isosurface
Ray Tracing Using Implicit KD-Trees.
IEEE Transactions on Visualization and

Computer Graphics, 11(5).

Wang, Z., Vandersteen, C., Demarcy, T.,
Gnansia, D., Raffaelli, C., Guevara, N., &
Delingette, H. (n.d.). A Deep Learning
based Fast Signed Distance Map
Generation.

Wu, J., & Kobbelt, L. (2003). Piecewise Linear

Approximation of Signed Distance Fields.

Zeng, Z. (2018). Approximating Signed Distance
Field to a Mesh by Artificial Neural

Networks.

11. Bibliography

Eberly, D. (2007). 3D Game Engine Design: A

Practical Approach to Real-Time
Computer Graphics. Second Edition.
Morgan Kaufmann.

Gregory, J. (2019). Game Engine Architecture.
Third Edition. CRC Press.

Korndorfer, J., Keinert, B., Ganse, U., Sanger,
M., Ley, S., Burkhardt, K., . . . Heusipp,

J. (2015). HG_SDF: A glsl library for
Building signed distance functions.
Retrieved 10 17, 2022, from

https://mercury.sexy/hg_sdf/

Lanhenke, M. (2021, December 29).
Understanding the Covariance Matrix.
Retrieved from Towards Data Science:

https://towardsdatascience.com/underst
anding-the-covariance-matrix-
92076554ea44

Lengyel, E. (2019). Foundations of Game Engine
Development. Volume 2: Rendering. CRC
Press.

Strain, J. (1999). Fast Tree-Based Redistancing
for Level Set Computations. Journal of
Computational Physics, 152(2), 664-686.

The Khronos Group. (2022). Vulkan Learn.
Retrieved 12 01, 2022, from
https://vulkan.org/learn

Williams, A. (2019). C++ Concurrency In Action.

Second Edition. CRC Press.

https://mercury.sexy/hg_sdf/
https://towardsdatascience.com/understanding-the-covariance-matrix-92076554ea44
https://towardsdatascience.com/understanding-the-covariance-matrix-92076554ea44
https://towardsdatascience.com/understanding-the-covariance-matrix-92076554ea44
https://vulkan.org/learn

2022/23

William Whitehouse

17

Appendix: Assets & Third-Party Code

Project assets:

• Stanford Bunny 3D Scan - Stanford University, license: Standford Scan
o Rexported as a GLTF model using Blender.

o A low-poly version created in Blender by the author.

• Sponza 3D Scene – Academy Software Foundation License (free for research & education)
o Rexported as a GLTF model using Blender.

• Low-Poly Sphere – Created by the author in Blender.

• Yokohama Skybox – Emil Persson, license: Creative Commons Attribution 3.0 Unported

Third-Party code and libraries:

• stb Image Library – Sean Barrett, License: public domain / MIT
 https://github.com/nothings/stb

• OpenGL Mathematics (GLM) Library – License: The Happy Bunny License / MIT
 https://github.com/g-truc/glm

• ImGUI – Omar Cornut, license: MIT
 https://github.com/ocornut/imgui

• RapidJSON – Tencent, license: MIT

 https://github.com/Tencent/rapidjson

http://www.graphics.stanford.edu/data/3Dscanrep/
https://creativecommons.org/licenses/by/3.0/
https://github.com/nothings/stb/blob/master/LICENSE
https://github.com/nothings/stb
https://github.com/g-truc/glm/blob/master/copying.txt
https://github.com/g-truc/glm
https://github.com/ocornut/imgui/blob/master/LICENSE.txt
https://github.com/ocornut/imgui
https://github.com/Tencent/rapidjson/blob/master/license.txt
https://github.com/Tencent/rapidjson

