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Abstract  

This project aims to explore various techniques at computing signed distance fields from triangle meshes 
in C++ and using the Vulkan graphics and compute API. Voxel grids are chosen as a method where each 
cell stores its distance to the mesh, which paired with the jump flooding algorithm allows for rapid 
generation of under a second on meshes that contain over 14K triangles. Binary Space Partitioning is 
explored, with the use of different types of partitioning planes and ways to render the tree using 

raymarching. This approach was found to be very poor regarding generation and runtime performance, but 
offered perfect accuracy compared to the voxel grid. 
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Brief Biography  

I have a strong interest in low-level engine programming and graphics. This project explores representing 
meshes using distance fields and their rendering within a custom C++ engine. I've gained knowledge 
about frequently overlooked yet crucial engine systems required for real-time applications, such as games, 

and have become proficient in using the Vulkan graphics API. There's much more to learn in this area, and 
even after this project ends, I'm eager to continue exploring new techniques and methods. 

Portfolio: https://williamwhitehouse.dev/  

How To Access The Project 

The project can be accessed via this repository: https://github.com/WSWhitehouse/CCTP-Project 

Please follow the getting started guide in the README to ensure the project is cloned properly and correct 
versions of the required software is installed – download links are provided in the README file. The project 

contains multiple branches to showcase the different approaches that were explored during development. 

The vendor folder contains code from third parties, the src folder contains all the C++ source files for this 
project. Any code that is borrowed from other authors is marked accordingly. 

Showcase Video 

https://www.youtube.com/watch?v=vs0w3iPgb40 
 

 

 

1. Introduction  

This project aims to explore various techniques 
of representing a triangular mesh as a Signed 
Distance Field (SDF). These techniques will be 

compared in terms of efficiency, performance, 
and memory usage.  

Although meshes are the primary way games 
visually represent objects, they may not be 
suitable for various technical situations, 
particularly those where an SDF would be more 
appropriate. Having a performant and memory 
efficient SDF representation of the mesh could 
result in greater usage within games. 

Distance fields and implicit surfaces are 
intriguing because they can undergo countless 
mathematical operations to manipulate them in 
space, which includes twisting, blending, and 
applying n-dimensional transformations. So far, 

these operations are primarily applied to 
primitives. However, representing a mesh as a 

distance field may enable these interesting 
operations to be performed on a complex shape. 

To render the generated distance fields, the 
raymarching rendering process will be 
implemented using the Vulkan API. Optimisations 
to raymarching will be employed to ensure high 

framerates and real-time rendering of the 
distance fields. 

 

 

 

 

 

1.1 Key Deliverables 

• Program to generate SDFs from triangle 
meshes. 

• Renderer written in C++ using the Vulkan 
API to showcase the generated distance 

fields. 
• A report outlining the research, 

implementation processes, key findings, 
evaluation, and future work. 

 

1.2 Project Objectives 

Must: 

• Volumetric raymarching renderer written 
using the Vulkan graphics API. 

• Triangle mesh to SDF generation 
application. 

Should: 

• Explore different ways of representing the 
distance field. 

• Implement, and compare different SDF to 
mesh generation methods. 

Could: 

• Support different types of meshes (i.e. 
open and self-intersecting). 

 

 

 

 

https://williamwhitehouse.dev/
https://github.com/WSWhitehouse/CCTP-Project
https://www.youtube.com/watch?v=vs0w3iPgb40
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2. Literature Review 

2.1 Vulkan Graphics API 

Vulkan is an API designed for “explicit control of 
low-level graphics and compute functionality” 

(The Khronos Group, 2022) allowing for efficient 
access to GPU resources and rendering 
capabilities with low overhead. 

The official specification is a guide written by 
many contributors that outlines best practices 
and correct usage of the Vulkan API (The 
Khronos Group, 2022). It is updated regularly 

and is highly relevant when developing an 
application with Vulkan. Updates to the 
specification are managed through pull-requests 

and issues on the Vulkan-Docs GitHub (The 
Khronos Group, 2022), meaning the information 
must be officially approved and accurate. 

Online guides such as the “Vulkan Tutorial” 
(Overvoorde, 2016) and “VkGuide” (Blanco, n.d.) 
give a general overview and example C++ code 
for getting started. The “Vulkan Programming 
Guide” (Sellers & Kessenich, 2016) is a book 
written by a Vulkan specification lead developer, 
which gives in-depth insight into the more 

complicated aspects of Vulkan, in contrast with 
the online guides. 

2.2 Signed Distance Fields 

An SDF returns the minimum distance to a 

surface given any point in space ( ), with the 
sign indicating whether the point is inside or 
outside the object (Jones, et al., 2006), as shown 

in Equation 1; where  is the function that 
returns the distance to the SDF.  

 
 

 

Equation 1 – SDF function. 

 

 

Inigo Quilez’s website (Quilez, n.d.) has been the 
primary resource for understanding SDFs. His 
blog contains a large collection of implicit SDF 
primitives, with code examples available on 

ShaderToy (Quilez, 2013) (see Figure 1). While 
the blog may contain some potential bias, it is 
challenging to argue with the results as an open-
source example is available. Additionally, due to 
Quilez’s impressive employment history, where 
he worked on the procedural sets at Pixar 
Animation Studios, there is a level of trust in the 

information he provides regarding SDFs.  

2.3 Raymarching 

Raymarching is a ray traversal “technique for 
rendering implicit surfaces using geometric 

distance” (Hart, 1995). Hart’s article describes a 
ray being projected from the camera position 

into the scene. The ray moves incrementally, 
based on the distance from all objects in the 
scene, ensuring it can safely move without 
intersecting a surface (Hart, et al., 1989). Once 
the distance approaches zero, it is considered a 
hit. Hart’s publications are peer-reviewed and 
heavily cited by other relevant sources. 

Figure 2 shows the algorithm where two rays are 
fired from the left side of the image (Hart, 1995). 
Spheres represent the distance at each step 
along the ray. This is repeated until the ray hits a 
surface (top ray) or reaches a max iteration 

count / maximum distance (bottom ray). 

 

2.4 Computing Signed Distance Fields 

Payne & Toga (1992) use a 3D voxel grid to store 

precomputed mesh distances. They outline a 
naïve implementation, where each cell iterates 

through all the triangles in a mesh and takes the 
minimum distance. The paper suggests some 
improvements, such as organising the mesh 
hierarchy before computing the distances (Payne 
& Toga, 1992). Wald, et al. suggests organising 
the voxel grid using a K-Dimensional tree which 
results in highly efficient ray traversal during 

rendering (Wald, et al., 2005).  

A Binary Space Partitioning (BSP) tree can 
efficiently represent the distance field and 
“adapts very well to the shape of the underlying 
surface” (Wu & Kobbelt, 2003). The mesh is 
recursively split into smaller pieces, for each 

piece the distance is approximated and an error 

Figure 1 - Raymarching Primitives on 
ShaderToy (Quilez, 2013) 

Figure 2 – Raymarching two rays (Hart, 1995). One 

hits the surface (top), one misses (bottom). 
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is estimated. If the error is above a threshold the 
model is split again. Another paper found similar 
results, but it was noted that the algorithm takes 
a while to generate and is not suitable for larger 

data sets (Fryazinov, et al., 2011). 

Ensuring the accuracy of the mesh distance field 
is important. Bærentzen, et al. discusses the use 
of a pseudonormal which is a “weighted sum of 
the normals on incident faces” (Bærentzen & 
Aanæs, 2005). When generating the sign of a 
distance field, the face normal of the triangle is 

used, but this normal may break down near an 
edge or vertex. The pseudonormal allows the 
normal to be calculated more accurately and the 
authors provide mathematical proof in another 

paper (Bærentzen & Aanæs, 2002). 

In his thesis, Zeng proposes a different approach 

where he investigates the use of an Artificial 
Neural Network (ANN) and a Generative 
Adversarial Network (GAN) to generate an SDF, 
which he compares to voxel grid-based methods 
(Zeng, 2018). It concludes that the GAN was the 
best type of network to generate a distance field.  

Further research has trained GANs on voxel grids 

and point clouds, successfully generating shapes 
that include intricate details such as “thin chair 
legs” and “precise modelling of an aeroplane tail” 
(Kleineberg, Fey, & Weichert, 2020). 

DeepSDF employs a machine learning approach 

which predicts the SDF value at a given query 
position (Park, Florence, Straub, Newcombe, & 

Lovegrove, 2019). Their method also preserves 
oriented surface normals which provides more 
visually accurate results.  

Wang et al. developed a Signed Distance Map 
Neural Network (SDMNN) that rapidly produced 
an SDF (Wang, et al.). They compared their 

approach to other machine learning methods and 
found it to be faster. However, they also found it 
did not scale well to larger data sets as the 
number of SDMs would grow quadratically with 
the number of shape parameters. 

3. Research Questions  

Q1. How can SDFs be generated from triangle 

meshes, considering the trade-off between 
accuracy, performance, and memory usage? 

Investigate various techniques for creating 
SDF representations of a mesh. Assess the 
precision, runtime performance, and memory 
consumption of each method to determine the 
most optimal approach.  

Q2. How can the performance of raymarching be 
optimised? 

Explore and evaluate techniques for improving 
raymarching performance in real-time Vulkan 
applications. 

Q3. Can techniques such as parallelisation be 
used to speed up SDF computation? 

Utilise and examine the use of Vulkan 
compute shaders to improve generation times 

for the various SDF computation approaches. 
Additionally, explore CPU multi-threading 
techniques that could improve the 
computation speed. 

4. Research Methods  

The research for this project was secondary, 
quantitative research, which includes using 

papers, reports, and presentations from various 
academic sources. Google Scholar and the UWE 

library were the key resources that enabled this 
type of research. Primary research is not possible 
in the timeframe allocated as this project is of a 
technical nature.  

The topic area for this project is extensively 
covered in academic literature, which was used 
throughout the project for guidance. Initially, 
research started with general search terms 
related to the topic area. As different methods 
were identified, the terms became more focused 
to concentrate on specific techniques. 

This project also involves creating a renderer 
using the Vulkan API, in which primary sources 
of information include forums, blog posts and the 
official specification. However, potential biases in 

these sources require careful analysis to ensure 
the information's accuracy and reliability. 

Online question and answer sites like Stack 

Overflow were used in some instances. These 
sites offer well-defined answers and insights from 
a range of people, often supported by credible 
sources. Experts can easily share their 
knowledge; however, these sites shouldn't be 
primary research sources due to potential biases 

and inaccuracies. In this project, they provided a 
basic understanding of a subject area, followed 
by more accurate research to back up claims. 

5. Ethical & Professional Principles  

This project generates no negative impacts, no 
human participants were involved during the 
research or development phase and no personal 

data is being held. 

There are some ethical and legal factors that 
must be considered. Throughout development 
different meshes were acquired for testing, these 
are obtained legally, with appropriate credit 
given to the authors. Any third-party code and 
libraries are used in accordance with their 

respective licenses. 

All assets used throughout the project can be 
seen in Appendix: Assets & Third-Party Code. 
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6. Research Findings  

Games require maximum performance and 
reliable framerates, using Vulkan ensures low 
overhead from the graphics driver which allows 

the program to run at its fastest. Furthermore, 
some computations can take advantage of 
Vulkan’s compute functionality which will further 
increase performance. 

Research indicates that implementing a Vulkan 
renderer can be challenging. However, the online 
guides provide a decent foundation to build upon 

throughout the project’s development. 

SDFs are widely used in games for collision 
detection, soft shadows, and ambient occlusion. 

Unreal Engine 5 employs distance fields for all 
the above; as they lead to faster computation 
during collision testing and more realistic and 

faster results with soft shadows (Epic Games, 
2021); see figure 3 for a comparison.  

 

Keinert et al.'s "Enhanced Sphere Tracing" 
(2014) presents an improvement to the 
raymarching algorithm originally proposed by 
Hart, called Over-Relaxation. This technique 
overshoots the distance when marching the ray. 

If the distance overlaps with the previous 
iteration’s distance, it is safe to assume the ray 
can safely pass through without intersecting a 
surface. If it does not overlap, the algorithm 
returns to Hart’s standard implementation.  

Figure 4 provides an illustration of the proposed 
technique (in red), where the yellow sphere 

represents where over-relaxation fails and 
returns to the standard algorithm (in blue). 

 

Coarse Cone Tracing is used to approximate the 
surface of the SDF and speed up raymarching, 
which was used in the game Claybook (Aaltonen, 
2018). Cones, which act as “growing spheres” 

are marched over multiple pixels in a pre-pass; 
each pixel’s ray starts from the end of the cone 
rather than the camera’s position (see figure 5). 
This reduces the number of steps each ray must 
make through empty space. 

 

SDFs are typically defined as implicit surfaces, 
meaning an equation defines the object rather 

than any physical representation, such as a mesh 
(Hart, 1995). Real time representation of a 
triangular mesh as a distance field poses an 

interesting problem; the minimum distance to all 
the triangles must be known from any point in 
space.  Doing this calculation for every triangle 
on each ray step, pixel and frame is extremely 
expensive. 

It is clear from the research that alongside 
raymarching optimisations either precomputing 

the mesh distances or using a heirarchial data 
structure is vital for maintaing high frame rates.  

The voxel grid approach contains a variety of 
techniques and data structures to improve the 

accuracy, efficiency, and memory usage. The 
naïve generation approach outlined by Payne & 

Toga (1992) is highly parrallelisable, making it 
an ideal candidate for a compute shader. 

Wald, et al.’s use of a K-Dimensional tree could 
increase voxel traversal speed. However, it was 
aimed at the CPU and used SIMD to speed up the 
algorithm, but they note that it “should similarly 
benefit GPU-based ray tracing approaches” 

(Wald, et al., 2005).  

Zeng’s thesis findings show that a neural 
network can successfully approximate an SDF 
with only minor errors. Furthermore, the GAN 
takes up less than 0.1% memory than the voxel 
gird, and even less memory than the triangle 

mesh itself shown in figure 6 (Zeng, 2018).  

Figure 3 – Shadows using a traditional shadow map 
(left), and distance fields (right) (Epic Games, 2021). 

Figure 5 – Coarse Cone Tracing. Cones are marched at 
a lower resolution, with individual pixel rays beginning 

where they end; this reduces the empty space the 
individual rays must march through. 

Figure 4 – Comparison between the standard 
raymarching algorithm (top) and over-relaxation 
(bottom) (Keinert, Schafer, Korndorfer, Ganse, & 

Stamminger, 2014) 
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Neural Networks also rapidly generate an SDF, 
with the SDMNN approach taking 0.2 seconds to 
generate compared to the 10.7 seconds the grid-
based approach took (Wang, et al.). However, it 

is unclear what optimisations, if any, where 
made to the grid-based method.  

 

Figure 6 – Size comparison of a mesh, voxel grid SDF 

and a GAN approximate of an SDF (Zeng, 2018). 

7. Practice  

This project was written in C++ and used the C 
bindings to interface with the Vulkan API. To 
begin with, a small rendering engine was created 
with a raymarching pipeline that renders SDFs. 
The pipeline consists of a vertex shader that 
draws a fullscreen quad and a fragment shader 

that performs the raymarching algorithm; all 
shaders are written in GLSL. 

7.1 Raymarching Pipeline 

The vertex stage is optimised by using a single 
triangle to cover the screen rather than the 
typical two-triangle quad. This saves one vertex 

shader invocation and reduces the number of 

fragment shader calls. In a two-triangle quad, 
the shared edge can invoke the fragment shader 
multiple times for the same pixels without 
performing any additional work, as GPUs invoke 
the stage in 2x2 pixel size blocks. This is known 
as helper invocations or helper pixels (Giesen, 

2011). To match the screen rather than the 
triangle, the UVs are created using Equation 2; 

where  represents each triangle vertex in clip 
space. 

 

Equation 2 – Creating screen space UVs from a 
triangle vertex position in clip space. 

A ray per-pixel is created, and the raymarching 
algorithm is performed, as shown in Code Listing 
1. Note that the RaymarchMap function (line 10) 

is defined elsewhere and returns the minimum 
distance to all objects in the scene from the 
current ray position (pos). This function is 

different for each SDF generation approach and 

will be discussed later alongside each 
implementation. 

 

 

Code Listing 1 – Raymarching algorithm implemented 
in the fragment shader (GLSL). 

 
The raymarch algorithm was optimised using the 
over-relaxation method described by Keinert et 
al (2014). This approach makes some changes so 

that the ray oversteps by a relaxation value ( ) 

where . To ensure the ray does not pass 
through or overstep a surface, the bounding 
sphere on the  ’th iteration must overlap the 

previous step’s ( ) sphere; as shown in 
Equation 3, where  is the sphere step length 

from an iteration. When the spheres don’t 
overlap, it falls back to the algorithm described in 
Code Listing 1. 

 

 
 

 

Equation 3 – Check for overlapping bounding spheres 
in the Over-Relaxation raymarching optimisation. 
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7.2 SDF Voxel Grid 

Following the implementation of raymarching, 
the next step is to explore SDF generation. This 
approach is where each cell in a 3D voxel grid  

( ) holds the minimum distance to the surface 
of an object.  

The voxel grid is a 3D image allocated on the 
GPU from a device local memory heap for 
maximum read/write performance in shaders and 

initialised to F32_MAX (the maximum number a 

floating-point value can represent). The image 
uses the VK_FORMAT_R32_SFLOAT format, 

allowing each cell to hold the signed distance at 
normal floating-point precision. Half precision is 

preferable as it would significantly reduce the 
size of voxel grid memory without a visually 
perceivable difference, but the required SPIR-V 
and Vulkan extensions for 16-bit floating point 
atomics are not supported on the author's 
graphics drivers so was not further investigated. 

To compute the distance, each cell ( ) 
iterates through the triangles in the mesh ( ) to 
find its nearest triangle and stores the distance 
to this triangle as its value:   

 

 

Equation 4 – Calculating the minimum distance to a 
collection of triangles in a mesh for a single voxel. 

When comparing the distance to each triangle, 
the absolute value of the distance is used. This is 
because the nearest distance to the triangle, 

regardless of whether it is in front or behind it, is 
needed. However, the signed value is assigned to 
the cell so that the inside of the object is 
maintained as negative. 

Figure 7 showcases the generated SDF voxel 
grids obtained using the Stanford Bunny as the 

input mesh. The voxel grid method also enables 

the use of distance field operations, which allow 
for smooth blending between surfaces as shown 
in figures 7(b) and 7(c). Figure 8 demonstrates 
the twist operation. 

 

Figure 8 – Low-poly torus mesh as an SDF voxel grid 
(2563 resolution). A twist operation has been applied to 
the torus and a smooth minimum blend has been used 

between the torus and a red sphere. 

This brute force method has a quadratic time 
complexity. Meaning increasing the number of 
voxels or triangles in the mesh will result in a 

significantly longer generation time.  

Initially, the computation of the voxel grid was 
performed on the CPU with each cell computing 
its distance consecutively. However, since each 
cell is computed independently, it is an ideal 
algorithm for parallel execution in a compute 
shader, which is officially known as an 

embarrassingly parallel problem. 

Compute shaders are programs that take 
advantage of the hundreds to thousands of cores 
that are on a GPU. They operate on the Single 
Instruction Multiple Data (SIMD) memory model, 
where the same code is executed on different 
data. In this case, the same distance 

computations are performed on the mesh but on 
different cells from within the voxel grid.  

Figure 7 – Stanford Bunny mesh represented as an SDF using a voxel grid (2563 resolution). Subfigures 
(b) and (c) have a smooth minimum operation applied between the SDF voxel grid and a red sphere.  

(a) (b) (c) 
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A Vulkan compute pipeline is created that takes 
three read only input buffers (bindings 0, 1, & 2), 
and a read/write image3D uniform for the voxel 

grid (binding 3). As seen in Code Listing 2, the 
buffer at binding 0 contains information about 

the voxel grid and the mesh. Binding 1 and 2 
contain the vertex and index arrays respectively, 
which must be in their own separate buffers as 
their length is not known at compile time. With 
the uploaded data, the compute shader is run on 
each cell in parallel and performs the same 
distance computation as seen in Equation 4. 

 
Code Listing 2 – Voxel grid compute shader 

generation input buffer (GLSL). 

The mesh indices could be in either a 32 or 16-

bit format. To make the compute shader inputs 

simpler, it only accepts 32-bit indices. But two 
16-bit indices can be encoded in a single 32-bit 
integer and later unpacked in the shader; as 
shown in Code Listing 3. The branch checking for 
index format (line 3) will not affect performance 

as all threads will be following the same branch; 
ensuring the lock-step parallelism stays in sync. 

 
Code Listing 3 – Get an index, possibly unpacking a 

32-bit integer into two 16-bit indices (GLSL). 

During the distance computation, the triangles 
are transformed by a scaling factor and are offset 
within the voxel grid, as seen in Code Listing 4. 

This is to ensure that the SDF grid represents the 
same size as the original mesh, and to centre it 
to fully utilise the cells in the grid. Without these 
transformations, the mesh won’t fill the grid to 
its maximum extents, or the mesh could extend 

out of the grid as seen in Figure 9.  

 
Code Listing 4 – Calculating distance to triangle on 

each voxel cell. Transforming each triangle to 
 ensure it is inside the grid bounds. 

 

 

Figure 9 – Low-poly Stanford bunny as an SDF voxel 
grid without triangle transformation. Ears and tail are 
cut off as the triangles are outside the grid bounds. 
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To speed up voxel grid computation, the jump 
flooding algorithm was implemented. This 
changes the compute shader where each 
invocation is at a triangle perspective rather than 

a cell. An Axis-Aligned Bounding Box (AABB) is 
created that encapsulates the triangle, then 
iterates through every cell that overlaps the box 
and calculates its distance, as seen in Code 
Listing 5. It’s important that atomics are used to 
load and store distances to the image3D as 

multiple triangles may overlap cells leading to 
threads accessing the image simultaneously. 

 
Code Listing 5 – Create a triangle AABB, go 
through all overlapping voxel grid cells and 

 compare distances (GLSL). 

A second compute shader is then dispatched on 

every cell to check the neighbouring cells in the 
four cardinal directions and diagonally (multiplied 
by a step length) for their distances. The 

algorithm then selects the minimum distance 
among the neighbouring cells and adds the 
distance between the current cell and the 

neighbour to ensure an accurate distance from 
the current cell position.  

The jump flooding algorithm runs iteratively and 
allows each cell to pass on its distance to other 
cells in the grid (Rong & Tan, 2006). Any cells 
that are within a certain distance to the original 
triangles are treated as seeds and therefore not 

updated. The number of iterations is calculated 
as the  of the maximum dimension of the 
grid, as outlined by Rong and Tan (2006). The 
start of each iteration also defines the step 
length, which is simply the number of iterations 

minus  (being the current iteration).  

Rendering the SDF voxel grid is simple, as the 
distance has been precomputed it involves 
looking up the valued stored in the cell the ray is 
currently positioned in. However, the ray position 

must be transformed into the local space of the 
voxel grid to calculate the correct voxel index; as 
seen in Code Listing 6. 

As the grid is stored as an image3D, the 

raymarching shader can sample the grid as a 
texture through an image sampler. The sampler 
has the VK_FILTER_LINEAR filter set, which is 

used to interpolate the distance values between 
voxels automatically, resulting in a smooth SDF. 

 

 
Code Listing 6 – RaymarchMap function for rendering 

the SDF voxel grid (GLSL). 

 

 

Figure 10 – Stanford bunny SDF generated using the 
jump flooding method. 
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7.3 Binary Space Partitioning Tree 

A Binary Space Partitioning (BSP) tree is a data 
structure that recursively subdivides space into 
two sets using dividing (or partitioning) 

hyperplanes (Ericson, 2005). During rendering 
the ray can traverse the tree and calculate the 
distance to the nearest point on the surface of 
the mesh. The KD-Tree used by Wald, et al. 
(2005) is a type of BSP tree, where all the 
dividing planes are aligned with the coordinate 
axes.  

The BSP Tree must be constructed from the 
mesh on the CPU before it can be traversed 
during raymarching. The steps to construct a BSP 
tree are as follows: 

1. Select a dividing plane. 
2. Partition the geometry into two sets with 

respect to the dividing plane. 
3. Form or add to the tree using the two 

newly created nodes.  
4. Check the new nodes and recursively 

subdivide again (go back to step 1) or stop 
BSP tree generation based on some 
heuristic. 

The first step involves selecting a dividing plane 
that splits the geometry into two sets. There are 
two options when choosing a dividing plane:  

• General Partitioning Planes subdivide the 

geometry evenly and aim to produce a 
well-balanced tree. This method allows for 
even traversal through the tree no matter 

what path the ray takes. 
• Autopartitioning Planes use a section of the 

geometry (i.e. a triangle) as the dividing 
plane. This aims to divide the object from 
empty space, which allows “early-outs” 
during ray traversal. 

Figure 11 shows the various approaches. With 
subfigure 10(c) representing a hybrid approach, 
which attempts to create a well-balanced tree 
that still allows for “early-outs” during traversal 
(Ericson, 2005). 

 

 

Figure 11 – Various BSP tree partitioning plane 
approaches. Subfigure (a) represents General planes, 

(b) represents Autopartitioning planes, (c) represents a 
mixture of both approaches. 

General partitioning planes are created by 
placing them at the centroid of all the vertices in 
the current set and orienting them in the 
direction of the largest variance. This ensures 

that the plane is positioned evenly between all 
vertices and divides the object equally. The 
normal of the plane is determined by using the 
eigenvector corresponding to the largest 
eigenvalue of the vertices covariance matrix.  

The covariance between two sets of values is 
calculated using the following formula (Lanhenke, 

2021): 

 

Equation 5 – Calculate covariance between  
two sets of values. 

where  is the number of vertices,  and  are 
the ’th component values from the sets being 

compared, and  and  are the means of the 
respective sets. 

The 3x3 covariance matrix ( ) for the set of 

vertices ( ) is calculated as follows, using 
Equation 5 to calculate the covariance between 
each vertex component: 

 

Equation 6 – Calculate the 3x3 covariance  
matrix for a set of vertices. 

Once the covariance matrix is constructed, 
eigendecomposition is used to find the 
eigenvalues and eigenvectors of the matrix.  

An  matrix  is said to have an 

eigenvector  and corresponding eigenvalue  
from an eigensystem in the following form (Van 
Verth & Bishop, 2016):  

 

Equation 7 

We can solve for eigenvalues by rearranging 

Equation 7; where  is the identity matrix: 

 

or 

 

Equation 8 

Zero vectors are not considered an eigenvector, 
so Equation 7 only holds true if: 

 

Equation 9 

 

(a) (b) (c) 

A B 

C 

A 
B 

C 

A 
B 

C 

D 

E F 
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When expanded out, Equation 9 is a polynomial 
in  of the ’th-degree called the characteristic 
polynomial for , where its roots are the 
eigenvalues. This means there are  eigenvalues 

for an  matrix (Press, Teukolsky, 
Vetterling, & Flannery, 2007). However, they 
may not be distinct from one another; the same 
eigenvalues from multiple roots are called 
degenerate. 

Typically, eigenvalues are solved using iterative 
transformations, such as the Householder 

method, or the /  method. However, these 
calculations are not numerically robust. Luckily, 
in this case, Eberly provides a numerically robust 
noniterative method for solving the characteristic 

polynomial of a  matrix that is faster than 
the other methods. Equation 10 is the 
expanded out characteristic polynomial for a 

 matrix, where  is the trace of the matrix 
(Eberly, 2014). 

 

Equation 10  

Using  as the input matrix ( ) and solving 
for the roots of this polynomial, as outlined in 

Eberly’s paper (2014), gives the three 
eigenvalues which can each be substituted in 
Equation 8 to solve for eigenvector . Once the 
eigensystems have been solved, the eigenvector 

corresponding to the largest eigenvalue is chosen 
as the dividing plane normal.  

Autopartitioning planes are much simpler to 

calculate. Firstly, the AABB that contains all the 
vertices in the current set is found, and the 
largest axis of the box is selected. Next, all 
triangles in the mesh are tested against this axis 
using a dot product. The triangle with a normal 
facing closest to the axis is chosen as the 
dividing plane. This approach finds a triangle 

which divides the object from empty space the 
most.  

Once the plane has been chosen, the object must 
be split into two sets. There are four ways a 
polygon can be classified with respect to a plane 

(Ericson, 2005): 

1. Infront of the dividing plane. 
2. Behind the dividing plane. 
3. Straddling the dividing plane. 
4. Coincident with the dividing plane. 

Its relatively trivial to classify the triangles with 
respect to the dividing plane. The signed distance 
to the plane for each triangle vertex is calculated 

(Quilez, n.d.); see Equation 11 where  and  is 
the plane normal and position respectively,  is 
the triangle vertex. 

 

Equation 11 – Calculate the signed distance  
from a point to a plane. 

If all three of the triangle vertices share the 
same sign, it’s either in front (when distance is 
positive) or behind (when distance is negative) of 
the plane. If there is a mixture of positive and 

negative signs, the triangle is straddling the 
plane. The triangle is coincident if the distances 
are all 0, but in practice this is rare and can be 

safely ignored and act as if the triangle is either 
in front or behind. 

To solve the issue of straddling triangles, there 
are two approaches. One approach splits the 
triangle into two, and they are added to the 

corresponding nodes with respect to the plane. 
Another approach adds the triangles to both 
sides, creating an overlap of the plane. Both 

approaches were tried during the implementation 
of the project. With the first approach being 
dropped as it made the mesh harder to split. 

Finally, the tree is built up from the nodes 

recursively, with the leaf nodes containing a set 
of triangles from the mesh. Each node is checked 
against a heuristic to determine if the geometry 
should be further split, in this case a maximum 
triangle count.  

Raymarching the BSP tree involves traversing the 

tree at each ray step, which can be a slow 
process and requires many tree traversals per 
ray per frame. The tree is traversed to find a leaf 
node, where the distance to each triangle in this 

node is compared. Which is done until no more 
leaf nodes are in the path of the ray. 

To try and improve performance, an optimisation 

to initially raytrace the tree and cache the closest 
leaf node was added. An implementation outlined 
in Wald’s thesis is used to traverse the tree using 
raytracing (Wald, 2004). During raymarching, 
the distance is computed from the singular leaf 
node and therefore does not traverse the tree 
again. However, this causes errors during 

rendering as the ray will never check the 
distances to other triangles in the mesh, which 
may be closer. 

 

Figure 12 – Low-poly sphere rendered  
using an SDF BSP tree. 
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8. Discussion of Outcomes  

8.1 Evaluation 

All performance results were captured on 
hardware equipped with an Intel Core  

i9-9900K CPU at 3.6GHz, 32GB RAM and an 
Nvidia Titan X (Pascal) GPU with 12GB VRAM. 

Figure 13 shows the graphed time for generating 
an SDF voxel grid using the naïve and jump 
flooding methods at different grid resolutions 
from the Stanford bunny model (~14K triangles). 
The naïve implementation generation time 

rapidly increases as the resolution is doubled, 
while the jump flooding approach remained 
under one second. The jump flooding approach 

will support higher resolution grids and could 
theoretically perform this at runtime on dynamic 
meshes every couple of frames. 

 

Figure 13 – Time comparison between SDF voxel  
grid generation methods. 

The accuracy of SDF voxel grids relies on two 

factors: the grid resolution and the size of the 
input mesh. Lower grid resolutions may result in 
“blocky” SDFs during rendering due to the fewer 
cells storing the distance, as seen in Figure 14.  

 
Figure 14 – Stanford bunny SDF grid at 323 resolution. 

The grid is also scaled to the size of the mesh to 
maximize cell usage. Therefore, smaller meshes 
have smaller cell sizes than larger meshes, 
meaning the same grid resolution covers a 

smaller area and results in greater accuracy on 
small meshes. These parameters need to be 
adjusted for each mesh to achieve desirable 
results. For instance, the visual difference 
between the Stanford bunny at 2563 and 5123 
resolutions are very minimal, as seen in Table 1.  

The brute-force approach generally provides 

more accurate distances compared to the jump 
flooding method, especially with objects that 
contain holes or are considered more complex.  

 
Table 1 – Visual comparison between naïve 

 and jump flooding voxel grid methods  
with different grid resolutions. 

 (Please zoom; images are high resolution) 

Comparing the memory usage of different 

resolutions is shown in Figure 15. The graph 

indicates that smaller resolution grids (  5123) 
have a negligible impact on memory usage, but it 
increases rapidly as the grid resolution is 
doubled. A resolution of 20483, for example, 
results in GPU memory usage above 32GB, 
making it unsuitable for most consumer-grade 

graphics devices1. 

 

1 Please note that a resolution of 20483 was not tested due 

to its high memory usage. The value presented in Figure 
15 represents the calculated memory usage for an image 
at that resolution, based on the other results. 
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Figure 15 – Voxel Grid Memory Usage (in  
Mebibytes) at different resolutions. 

The BSP tree provides perfect accuracy for the 
distance field as it uses the original triangles 
from the mesh. This contrasts with the voxel grid 
method where its accuracy is depended on the 
grid resolution, as discussed earlier. 

However, generation performance is very low. 
The tree must be prebuilt but cannot take 
advantage of compute shaders to speed up this 
process, meaning it’s all done sequentially on the 
CPU. Although, CPU multithreading could be 
utilised after a split has been made – this is 

discussed further in the following section. 

Dealing with individual triangles that straddle the 
dividing plane is not ideal. There isn’t a “good” 
way to handle them; splitting the triangle into 
two creates new triangles to deal with later 
either during generation or to test against during 
traversal. Adding the triangle to both sides of the 

tree means higher memory usage as some 
triangles are doubled and leads to the distance 
computation being performed on the same 
triangle. Both methods make building the tree 
more complex, and in some situations means the 
tree may never complete – in one instance it was 
generating for a few hours and consumed over 

97% of memory without completing.  

Furthermore, larger meshes were practically 
impossible to generate useful trees for with the 
current system. As it’s possible to get stuck in 
infinite loops when adding the same triangles to 

both nodes. Which lead to only simple meshes 
being generated with this method. 

Runtime performance is particularly poor in 
general with an average of 0.0498ms frame time, 

there are a few main reasons that could be 
behind this. Firstly, tree traversal for 
raymarching is very slow; the tree must be 
traversed for each point marched along the ray, 

for each pixel for each frame. Secondly, 
traversing a BSP tree causes a lot of branching, 
which is extremely unforgiving for GPU 

parallelism due to their lock-stepping thread 
architecture.  

Memory consumption is very high for BSP trees, 
the triangle mesh must be maintained as well as 

the BSP tree nodes and each leaf node indices.  

8.2 Future Work 

The jump flooding method for the SDF voxel grid 
approach could be further improved. Currently, 
it’s the fastest method for generating an SDF 
representation of a mesh but is the least 

accurate. Rong and Tan (2006) consider 
accuracy in their paper and provide some 
possible improvements that could be 
implemented.  

Memory usage of the voxel grid is also a major 
topic of future work. Figure 16 shows the bounds 
of the voxel grid; there is a lot of empty space, 

and some cells store distances that aren’t 
important. Employing a spatial data structure 
should be explored, examples include a Sparse 
Voxel Oct-tree or a VDB Tree which is highly 
memory efficient and allows for an average O(1) 

random access (Museth, 2013). Both data 
structures only store data where it’s needed, 
which significantly drops memory usage. In 

hindsight, perhaps this should have been a major 
direction of the project after seeing the speed 
and accuracy of the voxel grid approach. 

 

 

Figure 16 – SDF Voxel Grid bounds. 
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Wald's thesis covers several optimisations for 
BSP trees, including cache alignment and SIMD 
traversal, which greatly improved rendering 
efficiency for meshes. Wald also offers solutions 

to keep threads in sync, which would help with 
GPU parallelism. These improvements should be 
applied to the current BSP tree implementation, 
which has not yet been heavily optimised. 

To further improve the BSP tree, tweaks to the 
tree generation should be made. Currently, the 
generated trees are very large and don’t 

evaluate multiple dividing planes to find the most 
efficient. During generation the process is only 
utilising an average of 6.7% of the CPU, 
implementing simple multithreading to split the 

work between threads could improve 
performance dramatically and utilise more CPU 

cores. Theoretically, putting the first split nodes 
onto their own thread would halve generation 
time. 

Furthermore, dealing with triangles makes the 
tree awkward as some triangles overlap and 
belong to multiple nodes which makes future 
cuts almost impossible. A future direction could 

be to explore point clouds; in-fact this was 
started during project development.  

Generating a point cloud from a mesh involves 
randomly sampling a set of points from each 
triangle using barycentric coordinates, as seen in 

the following equation:  being the computed 
point on the triangle, and  being the two 

randomly generated values ( ). 

 

 

Equation 12 - Randomly sample point on triangle. 

Once a point cloud is generated, it can be built in 

a similar manner to the triangle BSP tree. 
However, since points are not connected by 
edges like triangles, there is no need to split 
them or place them on multiple nodes. This 
makes the construction of the tree simpler and 
potentially more efficient. 

An alternate direction for this project would 

involve the use of neural networks. These were a 
key part of the project research, but never 
implemented within this project. This approach 
could result in minimal memory usage, which is a 
major area which is lacking in the current 
implementations, as the neural network would be 
the only thing that must be stored once it has 

been trained. It can also represent an SDF with 
minimal errors (Zeng, 2018). 

8.3 Discussion & Reflection 

This project investigates the representation of 
meshes as signed distance fields, through the 
exploration of three methods, each with their 

own pros and cons. SDFs are widely used in 
game engines for various applications such as 

collision detection and ambient occlusion (Epic 
Games, 2021). While the methods explored in 
this project provide fast and accurate 
representations of meshes as SDFs, they also 

require high memory usage, making them 
impractical for real-world game engines in their 
current state. Therefore, future work is required 
to improve the memory efficiency of these 
methods (as mentioned in section 8.2) to make 
them more viable in game engines. 

To date, SDFs are not commonly used as a 

replacement for meshes in games, with only a 
few recent games such as Claybook (Second 
Order, 2018) utilising them. Within this game 
only simple shapes are represented; see Figure 

17. With new explorative techniques at 
representing complex objects as SDFs, they 

would become more popular in games. SDFs can 
also provide unique shapes with the 
mathematical operations, such as blending and 
twisting. Additionally, their capability to 
represent n-dimensional objects adds potential 
for unique game mechanics in the future. 

 

Figure 17 – Screenshot from Claybook (Second Order, 
2018). A dynamic world sculpted entirely from SDFs. 

Looking back at the originally proposed research 
questions, various techniques were explored to 
represent meshes as SDFs. Each of the methods 
supported different levels of accuracy, runtime, 
and generation performance, which addressed 

the key point from Q1. However, reducing 
memory consumption was not explored in any of 
the proposed techniques, making it a crucial area 

for future work. 

Optimisations, specifically Over-Relaxation, was 
implemented to improve raymarching 
performance (Q2). Although, it’s unclear if this 

technique had a big positive improvement on 
performance. Other techniques, such as coarse 
cone tracing, should be investigated to evaluate 
their potential benefits for raymarching. 

The project fully explored parallelism using GPU 
compute shaders (Q3), which significantly 

improved the speed of voxel grid generation and 
enabled concurrent computation. Future work on 
parallelism could involve the use of CPU 
multithreading to speed up computations and the 

exploration of SIMD and hardware intrinsics to 
improve CPU performance. 
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9. Conclusion & Recommendations 

The jump flooding voxel grid proved to be the 
strongest method among the implemented 
approaches. It is very quick at generating the 

SDF voxel grid and provides adequate accuracy 
for most use cases (for example, ambient 
occlusion). If higher accuracy is needed and the 
generation process is not taking place on client 
hardware, the brute force voxel grid approach is 
recommended as it provides instantaneous 
lookup speed at O(1), unlike the BSP tree which 

requires traversal. The BSP tree is recommended 

when perfect accuracy is essential and when 
runtime performance is not a primary concern 
(for instance, in non-real-time applications). But 

a lot of time tweaking the parameters of tree 
generation is needed to ensure the tree builds 
properly. Ultimately, the choice between the 
approaches will depend on the specific needs and 

constraints of the application. 

Although this project successfully implemented 
these techniques, there is still room for 
improvement and future work (as discussed in 
section 8.2). This could include modifications to 
the voxel grid data structure to improve memory 

usage, as well as exploring alternate approaches 
such as machine learning and neural networks. 

The approaches explored allow for complex 
objects to be represented as signed distance 

fields and may allow more games in the future to 
use them to represent objects instead of meshes.  

In conclusion, this project successfully explored 

various techniques for representing triangle 
meshes as signed distance fields. Three working 
methods were developed, each with a varying 
level of accuracy, generation speed, and runtime 
performance, that can be applied to different 
needs and requirements.  
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Appendix: Assets & Third-Party Code  

Project assets: 

• Stanford Bunny 3D Scan - Stanford University, license: Standford Scan 
o Rexported as a GLTF model using Blender. 

o A low-poly version created in Blender by the author. 
 

• Sponza 3D Scene – Academy Software Foundation License (free for research & education) 
o Rexported as a GLTF model using Blender. 

 
• Low-Poly Sphere – Created by the author in Blender. 

 

• Yokohama Skybox – Emil Persson, license: Creative Commons Attribution 3.0 Unported 
 

Third-Party code and libraries: 

• stb Image Library – Sean Barrett, License: public domain / MIT 
 https://github.com/nothings/stb  
 

• OpenGL Mathematics (GLM) Library – License: The Happy Bunny License / MIT 
 https://github.com/g-truc/glm  
 

• ImGUI – Omar Cornut, license: MIT 
 https://github.com/ocornut/imgui  
 

• RapidJSON – Tencent, license: MIT 

 https://github.com/Tencent/rapidjson  
 

http://www.graphics.stanford.edu/data/3Dscanrep/
https://creativecommons.org/licenses/by/3.0/
https://github.com/nothings/stb/blob/master/LICENSE
https://github.com/nothings/stb
https://github.com/g-truc/glm/blob/master/copying.txt
https://github.com/g-truc/glm
https://github.com/ocornut/imgui/blob/master/LICENSE.txt
https://github.com/ocornut/imgui
https://github.com/Tencent/rapidjson/blob/master/license.txt
https://github.com/Tencent/rapidjson

