
Advanced Technologies:
Procedural City Generation
William Whitehouse (19019239)
University of the West of England

October 14, 2022

1 Introduction

Procedural city generation involves the use of algorithms
and processes to automatically create virtual cities. It has
multiple potential uses, including creating realistic envi-
ronments for media and designing real-world cities. This
report will explore the techniques used in procedural city
generation, including 3D model synthesis, noise functions,
and other elements of a virtual city. Existing work, chal-
lenges/limitations and future directions for this project
will be discussed.

2 Related Work

2.1 City Engine

In "Procedural Modeling of Cities" (Parish and Müller,
2001), a method of generating a road system using an
extended L-System is discussed, which is used in the com-
mercial product "City Engine". The generation process
involves evaluating potential roads and creating new ones
using both local and global rules. The global rules de-
termine the overall direction of road creation based on a
population density texture map and the type of road (high-
way or urban street for example), while the local rules
impose constraints based on the environment, such as pro-
hibiting roads from crossing illegal areas or detecting road
intersections.

In a blog post, Barret argues that using an L-System
is unnecessary, slow and complicated (Barrett, n.d.).
As having to rely on a string rewriting algorithm is
not ideal for larger cities, therefore a simple queue
can be used instead. The queue is initialised with a
road and new potential roads are added only when the
local constraints on the segment have succeeded. The
algorithm continues evaluating the roads in the queue
until no more can be added and the queue is empty. The
pseudo-code below shows how the simplified and faster
road network generation algorithm might be implemented:

1 initialise queue Q with a single road entry
2 initialise road list R to empty
3
4 while (Q has elements)
5 {
6 pop smallest road from Q
7 compute local constraints
8 if (local constraints succeeded)
9 {

10 add road to R
11 add new roads using global goals to Q
12 }
13 }

2.2 Shape Grammar

Müller presents a new shape grammar in a paper for gen-
erating buildings procedurally (Müller et al., 2006). Shape
grammars provide a set of rules that dictate how to trans-
form one shape into another through a series of iterations.
This allows for the creation of complex building geometries
and facades through the application of simple, parame-
terised rules. By using shape grammars, it is possible to
generate a wide range of building designs using a relatively
small set of rules such as split, repeat and scale.

2.3 Wave Function Collapse

Wave Function Collapse (WFC) is a Model Synthesis tech-
nique used in 3D procedural generation (Gumin, 2016).
It generates grid-based content by starting with an empty
grid and filling it with tiles that follow specific rules and
constraints. The system uses constraint satisfaction to en-
sure that the chosen tiles are compatible with their neigh-
bours and to minimize contradictions. It tracks the possible
tiles that can be placed in each cell using a wave function,
which represents the probability of each tile being selected.
As the grid is filled, the wave function is updated until it
collapses at a point where only one tile can be placed in
a cell, at which point that tile is chosen and the process
continues.

Golding discussed a technique at a GDC talk that uses rule-
based constraints to generate buildings using pre-designed
tile sets (Golding, 2010). The main benefit of this method
is that all the tiles and constraints are created by an artist,
ensuring that the generated buildings are physically feasi-
ble and predictable. Instead of using an existing model as



Advanced Technologies: Procedural City Generation

Figure 1: City generated with WFC and Growing Grids Neural
Network (Nordvig Møller, Billeskov, and Palamas, 2020)

input, artists only need to create small, reusable tiles that
can be used in multiple tile sets to generate a wide range
of building styles by following the same constraints. This
allows for the efficient creation of diverse and coherent
building designs using a small set of varied tiles.

Sandhu et al. have extended WFC to include non-local
constraint reasoning, weight recalculation, and area prop-
agation (Sandhu, Chen, and McCoy, 2019). Non-local
constraints enable the use of non-tile items and allow for
the control of their frequency. Weight recalculation allows
external forces to affect the probabilities of tiles within an
area - for instance, the probability of enemies appearing
in an area might increase if a lock and key item are added.
Area propagation restricts the propagation of certain tiles
to specific areas.

Nordvig et al. conducted further research on the WFC
algorithm and successfully used it with a Growing Grid
(GG) neural network to generate a city - see figure 1 (Nord-
vig Møller, Billeskov, and Palamas, 2020). An important
aspect of their research was the inclusion of irregular grids
by adding noise to the vertices of the grid to distort it.
Stålberg proposed an alternative method for generating
an irregular quadrilateral grid by dividing a hexagon into
randomized quads and applying a relaxation algorithm
(Stålberg, 2019 and Stålberg, 2021). This approach allows
for the creation of a small smooth, irregular grid that is
a part of a larger hexagonal grid. He implemented this
method within the Townscaper game, which used WFC
to procedurally model buildings (Stålberg and Raw Fury,
2021 and Stålberg, 2018).

3 Method

3.1 Tile-Based Generation

A 2D WFC algorithm generates the road network using a
set of road tiles with basic neighbour relationships. A 3D
version of the same algorithm is utilized to generate the
buildings, which require more complex neighbour relation-
ships but follow a similar implementation.

3.1.1 Tiles

Tiles are prefab objects, they hold all the necessary infor-
mation in the "TileObject" script, as shown in Figure 2. This
example tile has two valid anchor points, which can be
seen as position gizmos in the top image and array values

in the inspector. The rotate axis booleans indicate which
axes the tile is allowed to rotate around, with this road tile
only able to rotate around the Y axis. The normal direction
vector holds the direction the tile is facing, which is unused
for road tiles but necessary for tiles with identical anchors
on different sides, such as walls in the building tile set.

A "TileSet" (see Figure 3) is an object which holds all tiles
used during the city generation for a specific set. The tile
set handles all valid tile neighbour generation. This is done
by comparing each tile’s anchor points with each other
while applying the appropriate rotation options, if the tile’s
normal direction is valid, they are compared using a dot
product in the following code.

1 // ... compare anchors ...
2
3 if (ValidNormal(tile1Normal) &&
4 ValidNormal(tile2Normal))
5 {
6 // Dot Product:
7 // 1 if they point in same direction ,
8 // -1 if they point in opposite direction ,
9 // 0 if they are perpendicular

10 float dot = Vector3.Dot(tile1Normal ,
11 tile2Normal);
12
13 // no anchors on either tile
14 if (anchors1.Count == 0 &&
15 anchors2.Count == 0)
16 {
17 // ignore this tile if they are facing the same

direction
18 if (dot > -0.5f) continue;
19 }
20 else
21 {
22 // ignore this tile if they are facing opposite

directions
23 if (dot < 0.25f) continue;
24 }
25 }
26
27 // tile is valid! add it to the neighbour list
28 neighbours.Add(tile2Index);

Each tile in the set has a frequency value representing
its probability of being chosen during the WFC algorithm.
The alias sampling method is used to randomly select a
tile based on its frequency, as it allows for random selec-
tion regardless of the number of frequencies (prxq, 2006,
rampion, 2017).

3.1.2 Wave Function Collapse

The WFC algorithm is run in a simple loop until all tiles
have been propagated or there has been a contradiction
(no valid tile for cell). There are two main steps for the
WFC algorithm, firstly, the propagate step is responsible
for determining which of the remaining tiles is valid in the
grid cells. When this step has finished considering each
cell the observe step runs, this checks the overall state of
the grid (complete or contradiction) and selects which cell
to next propagate if the algorithm should continue.

The algorithm selects the cell with the lowest entropy, or the
fewest remaining tile options, to propagate next. If possible,
it prefers to choose a cell with a completed neighbour to
avoid creating disconnected "islands." If no such cell is
available, it will fall back to choosing any cell. This is
a modified version of the original algorithm that aims to

Page 2 of 6



Advanced Technologies: Procedural City Generation

Figure 2: Road bend tile (top), with its tile object script inspector
(bottom).

Figure 3: TileSet Inspector.

improve the chances of generating a complete output while
avoiding disconnected tiles (e.g. a smaller road network
not connected to the main one).

To improve the output of the algorithm, an additional step
was added to remove invalid tiles from the edge of the grid
before the main WFC steps. This ensures that only tiles
that "end" can be chosen at the edge of the grid, resulting
in a road network that is internally complete within the
city.

3.2 City Districts

City districts are implemented using a queue-based flood
fill algorithm. This process involves checking each road grid
cell to see if it is empty and if it is, adding it to a district list.
The flood fill algorithm is then used to identify all empty
cells adjacent to the cell in question. The implementation
of the flood fill process follows the pseudocode provided.

1 initialise cell queue Q with the first cell
2 initialise searched cell list S to empty
3 initialise found cell list F to empty
4
5 while (Q has elements)
6 {
7 pop first cell from Q
8 add cell to searched list S
9 if (cell is an empty tile)

10 {
11 add cell to found list F
12 for (each neighbour tile)
13 {
14 if (S doesn ’t contain neighbour cell)
15 {
16 add neighbour cell to Q
17 }
18 }
19 }
20 }

Districts are selected based on a set of rules specific to
each district type. These rules include a range of minimum
and maximum values between 0 and 1 that represent the
relative distance from the center of the city where a district
can appear. For example, the highrise district has a range
of 0 to 0.3, indicating that it will only appear in the center
of the city. Minimum and maximum cell count parameters
control the size of each district, for example, the green
space district is limited to a maximum of 6 cells. Each
district type also has a maximum count to ensure that
it can only appear a certain number of times in the city.
Finally, each district has a probability frequency that is used
when randomly selecting a district using the alias sampling
method mentioned earlier. Figure 4 shows a visualisation
of the chosen districts in a final city model.

Figure 4: City district visualisation.

Page 3 of 6



Advanced Technologies: Procedural City Generation

3.3 Prop Placement

Props are objects that populate the city scene, such as
trees, reeds, lily pads in park areas, and barrels and pallets
in industrial districts - see figure 5b. It is easy to add
more props as prefabs in the inspector, each with its own
probability frequency. Prop placement is achieved using
blue noise, specifically Poisson Sphere Distributions. Based
on the research of Lagae and Dutré (Lagae and Dutré,
2005, Lagae and Dutré, 2006), a relaxation dart-throwing
technique was selected to implement this feature.

The dart-throwing technique involves randomly selecting a
point within a designated area and verifying that it does not
overlap with any existing points - see figure 5a. This process
is repeated until a certain number of failed attempts have
occurred, at which point the algorithm terminates. The
overlap radius is typically defined by a user-supplied con-
stant in the standard algorithm. The relaxation algorithm
initially increases this constant by a scale factor multiple
times, and if the algorithm fails to place new points, the
overlap constant is decreased and the algorithm is run con-
tinuously until it reaches the original user-supplied value.
This ensures that points are initially evenly distributed
across the area, with additional points being added be-
tween them during later runs of the algorithm.

(a) (b)

Figure 5: Image a is showing Poisson Sphere Distribution gener-
ating example points (red spheres) in an area. Image b
shows prop positions being generated in the park district
(trees, reeds and lily pads).

3.4 Exporting City Model To FBX

Unity provides an FBX exporter plugin on GitHub (Unity
Technologies, n.d.), simply downloading and installing it
in the project is enough to export the city model during
editor time. Some minor code changes were made to the
plugin to expose relevant functions to the city generation
system. This allowed the addition of an "Export To FBX"
button on the generation system that would automatically
export the correct objects to an FBX file.

4 Future Work

The WFC algorithm randomly places buildings between
roads, which requires refinement in order to achieve more
believable placement. One solution could be to perform

building placement in a separate pass, using the WFC al-
gorithm to generate a building to fit the designated plot.

Incorporating a height map would result in interesting
varied heights in the city, currently, the model is created
on a 2D grid. The height map could be supplied by the
user or procedurally generated from noise.

Improving the generation time of the city is a crucial area
that requires further attention. Currently, the entire city
is generated on a single thread, which can be slow for
large grid sizes and when creating numerous objects. One
solution is to implement multi-threading, which would
allow different districts to be processed asynchronously
and improve computation time. Unity has a built-in job
system that could be utilised for this purpose. Another
potential optimization is to combine the mesh objects into
a single entity, as spawning individual tiles and objects can
be costly.

5 Evaluation

5.1 City Layout

Comparing the generated road network to images of real-
life road networks (figure 7) key features such as round-
abouts and motorways aren’t generated. This is a drawback
of the WFC algorithm as it relies on neighbour relationships
rather than viewing the network as a whole. A solution
could be to use multiple passes of WFC for each type of
road and slowly refine the layout or use another algorithm
such as extended L-Systems proposed by Müller (2001).

The cities are generated on a regular grid, meaning roads
only connect at 90-degree intersections; compared to Bris-
tol’s road network, this looks unrealistic (figure 7a). When
compared to New York (figure 7b) these intersections
mimic the "block" style road architecture, although the
main roads still follow the landscape which is missing from
the generated cities. Adding noise to the model vertices
to distort the city (Nordvig Møller, Billeskov, and Pala-
mas, 2020) or using irregular quadrilateral hexagon-based
grids (Stålberg, 2019) could improve the realism and more
closely match the look of UK cities. By integrating terrain
into the city generation process, the resulting cities can be-
come more diverse and lifelike, as the roads would follow
the natural topography of the land, and must avoid natural
obstacles such as rivers.

5.2 City Detail

The generated cities offer a realistic inclusion of districts
where different areas have varying population densities
and building use. For example, the park areas appear
considerably more on the outer edges of the city which
emulate the urban areas of a real city and the highrise dis-
trict only appears in the city centre where the population
density is at its highest.

Page 4 of 6



Advanced Technologies: Procedural City Generation

The fine-grain details of the city are missing in some areas.
For example, buildings don’t have any windows or doors
(see figure 6). Using shape grammar proposed by Müller
(2006) could help accurately generate building facades
with these necessary details, procedural texturing could
also be employed to increase detail without necessarily
spawning new objects. The park areas are well detailed
with the inclusion of pedestrian paths, ponds/lakes and
props such as trees.

6 Conclusion

In summary, the project should have prioritized the WFC
algorithm more, as time was spent on features that were
not discussed in this report and did not contribute to the
final project (L-System road network, splines, hexagon-
based grids). While the parks in the generated city are
well-detailed, the buildings could benefit from more de-
tail, as mentioned in the evaluation. The road network is
complete and believable, with various road details such
as intersections and crossings included. The tile sets used
for generating the city are easily expandable to include
more road and building types, and the districts within the
city can be expanded by adding new scriptable objects and
tweaking their parameters.

(a)

(b)

Figure 6: Visually comparing real-life residential housing (6a) to
the generated housing (6b).

(a)

(b)

(c)

Figure 7: Visually comparing the generated road network (7c) with
the network from Bristol, UK (7a) and New York, USA
(7b). Figures 7a & 7b provided by Google Maps.

Page 5 of 6



Advanced Technologies: Procedural City Generation

(a) Generated city.

(b) Traffic light intersection and zebra crossing.

(c) Park district with paths, pond and props.

(d) Industrial district, with highrise in the distance.

Figure 8: Final generated city screenshots.

References

Barrett, Sean (n.d.). L-Systems Considered Harmful. url:
https://nothings.org/gamedev/l_systems.html.
(accessed: 02.01.2023).

Golding, James (2010). GDC - Building Blocks: Artist Driven
Procedural Buildings. url: https://www.gdcvault.
com / play / 1012219 / Building - Blocks - Artist -
Driven-Procedural. (accessed: 02.01.2023).

Gumin, Maxim (2016). GitHub - Wave Function Col-
lapse. url: https : / / github . com / mxgmn /
wavefunctioncollapse. (accessed: 02.01.2023).

Lagae, Ares and Philip Dutré (2005). “A procedural object
distribution function”. In: ACM transactions on graphics
(TOG) 24.4, pp. 1442–1461.

– (2006). “Poisson sphere distributions”. In: Vision, Model-
ing, and Visualization. Akademische Verlagsgesellschaft
Aka GmbH, pp. 373–379.

Müller, Pascal et al. (2006). “Procedural modeling of build-
ings”. In: ACM SIGGRAPH 2006 Papers, pp. 614–623.

Nordvig Møller, Tobias, Jonas Billeskov, and George Pala-
mas (2020). “Expanding wave function collapse with
growing grids for procedural map generation”. In: Inter-
national Conference on the Foundations of Digital Games,
pp. 1–4.

Parish, Yoav IH and Pascal Müller (2001). “Procedural mod-
eling of cities”. In: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques,
pp. 301–308.

prxq (2006). The Alias Method. url: https : / / prxq .
wordpress.com/2006/04/17/the- alias- method/.
(accessed: 02.01.2023).

rampion (2017). Efficient algorithm to randomly select items
with frequency. url: https://stackoverflow.com/a/
873430/13195883. (accessed: 02.01.2023).

Sandhu, Arunpreet, Zeyuan Chen, and Joshua McCoy
(2019). “Enhancing wave function collapse with design-
level constraints”. In: Proceedings of the 14th Interna-
tional Conference on the Foundations of Digital Games,
pp. 1–9.

Stålberg, Oskar (2018). YouTube - EPC2018 - Oskar Stalberg
- Wave Function Collapse in Bad North. url: https://
www.youtube.com/watch?v=0bcZb-SsnrA. (accessed:
02.01.2023).

– (2019). YouTube - ORGANIC TOWNS FROM SQUARE
TILES - a talk by OSKAR STALBERG at INDIECADE EU-
ROPE 2019. url: https://www.youtube.com/watch?
v=1hqt8JkYRdI. (accessed: 02.01.2023).

– (2021). YouTube - SGC21- Oskar Stalberg - Beyond Town-
scapers. url: https://www.youtube.com/watch?v=
Uxeo9c-PX-w. (accessed: 02.01.2023).

Stålberg, Oskar and Raw Fury (2021). Townscaper. url:
https://store.steampowered.com/app/1291340/
Townscaper/.

Unity Technologies (n.d.). GitHub - Unity FBX Exporter Plu-
gin. url: https://github.com/Unity-Technologies/
com.unity.formats.fbx. (accessed: 02.01.2023).

Page 6 of 6


