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1 Introduction

In this report, we will explore the rendering equation and
BRDFs, as well as the use of DirectX 11 in the rendering
of physically-based clay materials in real time. By under-
standing these concepts and technologies, we can improve
the realism and accuracy of material renderings, and better
understand the underlying principles of computer graphics.

2 Related Work

To create realistic images, it is important to accurately
simulate the way light interacts with surfaces. The way
that light reflects off, absorbs into, or passes through a
material is influenced by the physical properties of that ma-
terial (Wynn, 2000). For example, a mirror and sandpaper
will reflect light differently due to their different physical
characteristics.

2.1 BRDFs & The Rendering Equation

A Bidirectional Reflectance Distribution Function (BRDF)
is a model used to determine how much light, given an
incoming direction (ω⃗i), is reflected from a point on the
surface (x) along an outgoing direction (ω⃗r) (TUWien,
2015). It can be written formally as:

fr(ω⃗i, x, ω⃗r) (1)

BRDFs follow three important properties to be considered
physically accurate (Duvenhage, Bouatouch, and Kourie,
2013):

• Helmholtz-Reciprocity - The direction of the ray can
be reversed:

fr(ω⃗i, x, ω⃗r) = fr(ω⃗r, x, ω⃗i)

• Positivity - It is impossible for an exit direction to have
negative reflectance:

fr(ω⃗i, x, ω⃗r) ≥ 0

• Energy Conservation - A surface may reflect or absorb
incoming light, but nomore can exit than the incoming
amount: ∫

Ω

fr(ω⃗i, x, ω⃗r) cosθ dω⃗i ≤ 1

The symbol
∫
Ω
indicates an integral over a hemisphere

of all directions.

Typically the function uses spherical coordinates rather
than cartesian vectors (Wynn, 2000), and the direction
parameters are a pair of angles. Each pair contains the
azimuthal angle and normal angle respectively (Montes
and Ureña, 2012). For simplicity, the function will use
direction vectors instead (ω⃗i and ω⃗r).

A materials brightness (radiance) at a point is made up
of its emitted light plus the reflected incoming light, this
is formally the rendering equation (TUWien, 2015 and
Lafortune, 1996) which is written as:

Lo(x, ω⃗r) = Le(x, ω⃗r)︸ ︷︷ ︸
emitted light

+

∫
Ω

Li(x, ω⃗i)fr(ω⃗i, x, ω⃗r)(ω⃗i · n⃗)dω⃗i︸ ︷︷ ︸
reflected incoming light

(2)

• Lo(x, ω⃗r) - Outgoing radiance at point x towards di-
rection ω⃗r.

• Le(x, ω⃗r) - Emitted radiance at point x towards direc-
tion ω⃗r.

•
∫
Ω
. . . dω⃗i - Sum of all the scattered light over all pos-

sible incoming directions.
• Li(x, ω⃗i) - Incoming radiance from direction ω⃗i to

point x.
• fr(ω⃗i, x, ω⃗r) - BRDF.
• (ω⃗i·n⃗) - The dot product of the incoming light direction

(ω⃗i) and the surface normal at point x (n⃗). Sometimes
written as cosθ - as seen in the energy conservation
equation.

The rendering equation cannot be solved directly, because
the radiance at point x depends on the radiance at all
other points in the scene, which also depend on x (TUWien,
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2015). Monte Carlo integration (path-tracing) is a method
that can be used to accurately simulate the rendering equa-
tion (Harrison, 2010). However, this method is not viable
for real-time applications, so the light is approximated
instead.

Diffuse reflection (d) scatters light in all directions, result-
ing in a rough surface, while specular reflection (s) reflects
light in a single direction, resulting in a glossy or shiny
surface. In computer graphics, an ambient reflectance term
(a) is often added to ensure that surfaces do not appear
completely unlit - this is typically a constant value. The
intensity of light on a surface (i) is equal to the sum of all
these reflections:

i = a+ d+ s (3)

2.2 Basic Reflectance Models

The Lambertian model is the simplest diffuse BRDF model
(Koppal, 2020). In this model, the reflectance is equal
in all directions and the intensity of the reflected light
is determined by the angle between the surface and the
light source. The Lambertian diffuse value is calculated as
follows with kd being a constant that controls the diffuse
component and l⃗ being the light direction (Blinn, 1977):

d = fr(ω⃗i, x, ω⃗r) =
kd
π︸ ︷︷ ︸

Lambertian BRDF

(n⃗ · l⃗)ω⃗i︸ ︷︷ ︸
intensity of light

(4)

Phong adds specular highlighting to make it more phys-
ically accurate (Phong, 1975). And an improvement by
Blinn makes this model more efficient (Blinn, 1977).

The specular term is computed by a dot product of the sur-
face normal (n⃗) and the halfway vector (⃗h) to some power
(c). The halfway vector is calculated using the light (⃗l)
and view directions (v⃗) as seen in equation 5. On a perfect
mirror surface, the light would only reach the viewer if the
surface normal equals the halfway vector. On less reflec-
tive surfaces, the specular component falls off slowly as the
normal direction moves away from the specular direction
(Phong, 1975 and Blinn, 1977).

h⃗ =
l⃗ + v⃗

length(⃗l + v⃗)

s = (n⃗ · h⃗)c
(5)

2.3 Microfacet Models

Microfacet models introduce a detailedmicrosurface (made
up of many so-called microfacets) that replaces the sim-
plified macrosurface to make the surface appear rougher;
figure 1 shows a comparison between the two surfaces.
The microsurface is not predefined or modelled and is too
small to be seen directly but affects how light is reflected
through a series of functions (Walter et al., 2007). α being
the roughness parameter.

Figure 1: Comparison of a micro and macro surface (Walter et al.,
2007). n⃗ is the macrosurface normal, m⃗ is the normal
of a microfacet.

• Distribution Function D(⃗h, α) with
∫
Ω
D(⃗h, α) = 1

Describes the distribution of the normals of the micro-
surface m⃗ that are aligned relative to vector h⃗ (Montes
and Ureña, 2012).

• Geometric Attenuation Factor G(v⃗, l⃗, α) ∈ [0, 1]
Defines the ratio of visible facets on the surface due to
shadowing or masking (Montes and Ureña, 2012). v⃗
being the view direction and l⃗ being the light direction.

• Fresnel Reflection Function F (⃗h, v⃗, F0) ∈ [0, 1]
Determines the fraction of light that is reflected
and refracted at the interface between different sur-
faces (Walter et al., 2007 and Blinn, 1977). Where
F0 represents the base reflectivity of the surface
(LearnOpenGL, n.d.).

A widely used Distribution Function is the Beckmann-
Spizzichino model (Pharr, Jakob, and Humphreys, 2016):

D(⃗h, α) =
exp(− tan2(n⃗ · h⃗)/α2)

πα2 cos4(n⃗ · h⃗)
(6)

Another commonly used Distribution Function is the Trow-
bridge and Reitz model (Trowbridge and Reitz, 1975 and
Pharr, Jakob, and Humphreys, 2016) which is also known
as the GXX model (Walter et al., 2007). Compared to the
Beckmann Distribution, this model has a smoother falloff
at grazing viewing angles, resulting in a more realistic
rendering of certain surfaces.

D(⃗h, α) =
α2

π((n⃗ · h⃗)2(α2 − 1) + 1)2
(7)

Heitz showed that the Geometric Function proposed by
Smith is highly accurate (Heitz, 2014) as it accounts for
both the geometry obstruction caused by the view direction
and the geometry shadowing caused by the light direction
(LearnOpenGL, n.d.). The function is as follows, with G1

being set to the GGX formulation (Smith, 1967), i being
the input parameter which is set to either v⃗ or l⃗:

G(v⃗, l⃗, α) = G1(v⃗, α)G1(⃗l, α)

G1(i, α) =
2(n⃗ · i)

n⃗ · i+
√

α2 + (1− α2)(n⃗ · i)2
(8)

Finally, the Fresnel function is often approximated us-
ing the model proposed by Schlick (Schlick, 1994 and
LearnOpenGL, n.d.):

F (⃗h, v⃗, F0) = F0 + (1− F0)(1− (⃗h · v⃗))5 (9)
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The Torrance-Sparrow BRDF model uses V-shaped facets of
equal length with random orientations to simulate specular
reflections; the facet distribution is controlled ks (Torrance
and Sparrow, 1967 and Montes and Ureña, 2012). The
model uses the Beckmann distribution, GGX geometry func-
tion and Schlick’s Fresnel approximation.

fr(ω⃗i, x, ω⃗r) =
ks

4π(n⃗ · ω⃗r)
D(⃗h, α)G(v⃗, l⃗, α)F (⃗h, v⃗, F0)

(10)

This was later improved in the Cook-Torrance BRDF model
which only considers the facets that are oriented towards
the h⃗ as contributors to the final reflection (Cook and Tor-
rance, 1982 and LearnOpenGL, n.d.). The model combines
the D, G, and F functions of the Torrance-Sparrow model.
The h vector simulates an imaginary surface that behaves
as a perfect mirror, and the Fresnel term represents the
reflection of polished surfaces (Montes and Ureña, 2012).

fr(ω⃗i, x, ω⃗r) =
D(⃗h, α)G(v⃗, l⃗, α)F (⃗h, v⃗, F0)

4(n⃗ · v⃗)(n⃗ · l⃗)
(11)

The Oren-Nayar model improves on Lambertian diffuse
reflections (Oren and Nayar, 1994 and Oren and Nayar,
1995). This model takes into account the angle between
the incoming and outgoing light vectors, as well as the
roughness of the surface. The model does not have a closed-
form solution (Pharr, Jakob, and Humphreys, 2016), but
this approximation fits well:

a = max(ω⃗i, ω⃗r) b = min(ω⃗i, ω⃗r)

A = 1− 0.5
α2

α2 + 0.33
B = 0.45

α2

α2 + 0.09

fr(ω⃗i, x, ω⃗r) =
kd
π
(A+Bmax(0, cos(ϕi − ϕr)) sin(a) tan(b))

(12)

Figure 2: First implementation of basic PBR using the Blinn-Phong
lighting model.

3 Method

3.1 DirectX 11 Renderer

A small DirectX 11 renderer was written in C++ in order
to simulate the appearance of clay in real time. Using
the DirectX graphics API allows almost full control over
the rendering pipeline while gaining low-level access to
shaders and resources.

The program supports rendering a small scene where
the user can fly around, which includes primitive objects
loaded from OBJ files and a point light. These primitive
objects each have a material, that with the inclusion of
ImGUI, can be updated at run time to see live results.

3.2 Clay Appearance &
Physically Based Rendering

Implementing Physically Based Rendering (PBR) into the
renderer involves creating HLSL shaders that simulate light
accurately by following a BRDF model. To help with under-
standing the PBR pipeline, the Blinn-Phong shading model
was implemented first (see figure 2), along with a simple
texture system to create some extra detail on the model.

Normal mapping was implemented to add extra detail that
isn’t modelled into the mesh (see figure 3) and was origi-
nally proposed by Blinn (1978). A normal map is a texture
that defines a direction rather than a colour (Mikkelsen,
2020); its value is obtained from a texture lookup in the
fragment shader. However, the value must be multiplied
by a 3x3 Tangent (T⃗ ), Bitangent (B⃗), and Normal (N⃗)
matrix (TBN3×3) calculated from the current vertex (Kil-
gard, 2000), see equation 13. The transformed normal,
known as the perturbed normal (Blinn, 1978) replaces
the vertex normal N⃗ as the surface normal n⃗ in the BRDF
implementations.

TBN3×3 =

 T⃗1 T⃗2 T⃗3

B⃗1 B⃗2 B⃗3

N⃗1 N⃗2 N⃗3

 (13)

Figure 3: A normal map texture is used when rendering the object
with the Blinn-Phong lighting model.
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N⃗ is already known as part of the mesh, and T⃗ is pre-
computed beforehand by equation 14. With e⃗ being the
triangle edges calculated from each of the triangle’s vertex
positions (p⃗) and r being the reciprocal of the determinant
of the UV differences.

e⃗1 = p⃗1 − p⃗0

e⃗2 = p⃗2 − p⃗0

∆u1 = u1 − u0

∆u2 = u2 − u0

∆v1 = v1 − v0

∆v2 = v2 − v0

r =
1

∆u1∆v2 −∆u2∆v1

T⃗ = r(e⃗1∆v2 − e⃗2∆v1)

(14)

B⃗ is calculated as the cross between the tangent and normal
at runtime in the fragment shader like so:

B⃗ = N⃗ × T⃗ (15)

The specular component was improved to use the Cook-
Torrance BRDF, figure 4 shows how different Fresnel and
Specular roughness values affect the specular highlight on
the object. Figure 4a shows a shinier specular highlight
compared to 4d which is very rough.

(a) (b)

(c) (d)

Figure 4: Object rendered using the Cook-Torrance BRDF.
4a Fresnel roughness of 0.1, Specular roughness of 0.3.
4b Fresnel roughness of 0.5, Specular roughness of 0.5.
4c Fresnel roughness of 0.2, Specular roughness of 0.7.
4d Fresnel roughness of 1.0, Specular roughness of 1.0.

(a) (b)

Figure 5: The specular component causing incorrect lighting.

Implementing the Cook-Torrance with the normal mapping
caused incorrect light calculations on any part of the object
where (n⃗ · l⃗) <= 0.0 causing the object to be rendered
completely black (see figure 5a). This was fixed by hard-
coding the specular component to ‘0.0‘ when this occurs as
proposed in the Unity forums (Wolfram, 2011). However,
a harsh cutoff line still appears when viewing the object at
certain angles (see figure 5b).

The Oren-Nayar BRDF was implemented to give roughness
to the diffuse component. Figure 6 shows a comparison of
the different roughness values when using the Oren-Nayar
BRDF, to more easily compare the specular component has
been disabled.

(a) Roughness of 0.0. (b) Roughness of 0.5. (c) Roughness of 1.0.

Figure 6: Objects rendered using the Oren-Nayar BRDF.

Further detail was added by including another normal
map and blending between the two. The normal maps are
blended together using the following equation, where v is
a value retrieved from a normal map:

n⃗ = (v1 + v2)


1.0
1.0
0.5
0.5

 (16)

To imitate the effect of people touching modelling clay, a
fingerprint normal map was used in order to replicate the
surface texture (see figure 7).

There are also additional parameters to change the uv
scaling and offsets of the normal textures, which simply
multiply and add to the base uv respectfully.

Page 4 of 7



Advanced Technologies: Clay Appearance

Figure 7: The default normal texture with a "fingerprint" normal
map applied for extra detail.

Figure 8: Environment reflections.

Environment reflections were also added, see figure 8. By
including the skybox cubemap in the fragment shader it can
be sampled by calculating the u⃗v depending on the current
view direction, as seen in equation 17. The reflections are
controlled by a parameter and a noise texture to give them
some amount of randomness.

u⃗v = n⃗(2.0(n⃗ · v⃗)− v⃗

ûv =
u⃗v

∥u⃗v∥
(17)

Subsurface Scattering (see figure 9) was achieved by using
an efficient approximation named wrap lighting (Fernando
et al., 2004). This modifies the diffuse function so the light
wraps around the object where it would normally appear
dark, this is when the normal is perpendicular to the light
direction ((n⃗ · l⃗) = 0.0). This approximation is calculated
by equation 18, with w1 being a number between 0 and
1 that controls how far the light will wrap, w2 being the
width of the wrapping and s being the calculated scatter
amount which is multiplied by a colour and an intensity
before being added to the diffuse component.

(a) (b)

(c) (d)

Figure 9: Object rendered with subsurface scattering.
9a Wrap amount of 0.5, Width of 0.2.
9b Wrap amount of 0.0, Width of 0.4.
9c Wrap amount of 0.4, Width of 0.2.
9d Wrap amount of 0.0, Width of 1.0.

x = max(0.0, ((n⃗ · l⃗) + w1)/(1.0 + w1))

s = smoothstep(0.0, w2, x)smoothstep(w22.0, w2, x);
(18)

4 Future Work

One potential future direction would be to explore tech-
niques such as path tracing and Monte Carlo integration
to further improve the physical accuracy of rendering ma-
terials. It is unclear if the project would remain real-time
as these techniques are commonly quite expensive.

The inclusion of a material system could allow for the quick
iteration of different types of models. Typically, a renderer
includes both metallic and dielectric BRDF materials. By
adjusting the inputted material’s "metallic" and "roughness"
values, these BRDFs can be blended to create more lifelike
materials. Additionally, incorporating a texture allows for
distinct regions of the mesh to be rendered with different
properties.

There are more advanced and complete BRDF shading
models which were not discussed or implemented in this
project; using these additional models could achieve a
more realistic result. For example, the He-Torrance-Sillion-
Greenberg BRDF considers the wave-like nature of light
through diffraction and interference (Montes and Ureña,
2012).
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5 Evaluation

Comparing the rendered clay with real-life modelling clay
from the Chicken Run movie (see figure 10 and 11), it is
clear that the implemented normal maps have successfully
captured some of the fine-grain details of clay material.
Specifically, Figures 11b and 11c have a close resemblance
to the natural patterns found in clay as well as the finger-
prints that can be seen on the hands in figure 10.

However, there are some differences between the rendered
clay and the reference image. For example, the specular
highlights on the beak areas in Figure 10 are noticeably
stronger than those in the render. Although, it is important
to note that these parameters can be adjusted at runtime
to achieve the desired result.

The render accurately depicts the way light interacts with
rough materials thanks to the use of the Cook-Torrance
and Oren-Nayar BRDF models. This helps to create a more
realistic and believable representation of clay material, en-
hancing the overall quality of the render.

6 Conclusion

In conclusion, the renderer created is capable of simulating
clay materials that appear very close to reality. It incor-
porates some advanced BRDF models, normal mapping,
environment reflections, and basic subsurface scattering,
making it a promising start towards a PBR renderer. How-
ever, considering the extensive research on BRDFs, there
is still plenty of room for improvement to achieve even
greater physical accuracy.

Figure 10: A screenshot captured from the Chicken Run movie
(Aardman Animations, 2000), showing the main char-
acter made from modelling clay.

(a)

(b)

(c)

Figure 11: Final screenshots of clay renderer.
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