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1 Introduction

At first glance, First Person Shooter (FPS) games look fairly
trivial, but behind the scenes, some complex algorithms
and systems ensure the game runs smoothly. This project
attempts to recreate a small playable slice of Doom, with
a focus on exploring and understanding the modern tech-
nologies that underpin these systems.

2 Related Work

2.1 Data-Oriented Design

Data-Oriented Design is a programming paradigm that fo-
cuses on designing software around the data rather than
what logic is performed on it (Fabian, 2018). The goal of
this paradigm is to maximise software efficiency by improv-
ing cache locality and reducing memory fragmentation
and cache misses. Real-time applications, such as games,
require maximum efficiency as they involve complex and
computationally expensive algorithms; which is why data-
oriented design is so important.

Data-oriented design structures code around data rather
than objects, using "components of data" instead of tradi-
tional Object-Oriented Programming (OOP) objects. Com-
ponents alone don’t hold much meaning, but when com-
bined, they can create complex objects that are easily ex-
pandable. For instance, in traditional OOP programming,
a player class might include every possible option, even
those needed only in rare scenarios (Fabian, 2018). With
data-oriented design, a player class doesn’t exist, but its
functionality is built from a range of components. This
approach offers greater flexibility, as components can be
added or removed as needed, allowing for more efficient
use of resources.

Data organisation can have a significant impact on the
performance of a program. By arranging data to be cache-
friendly, a computer can make predictable memory fetches,
resulting in faster processing times. This is achieved by
storing relevant data in adjacent memory chunks, eliminat-
ing the need to fetch data from different memory locations
(Nystrom, 2014).

2.2 Physics

Physics is a significant system involved in various aspects of
gameplay development. Collision detection and resolution
are among the primary areas, using a collision volume to
identify intersections and calculating the Minimum Trans-
lation Vector (MTV), which indicates the minimum object
movement required to no longer intersect the original vol-
ume (Ericson, 2004).

The Axis-Aligned Bounding Box (AABB) is arguably the
simplest volume, defined by its minimum and maximum
corner points (Ericson, 2004). The 3D intersection test for
AABB is shown in Equation 1, with A1 and A2 representing
the min and max corner points for object A and B1 and
B2 representing the min and max points for object B. To
optimise collision detection further, one can utilise the GPU
(Cai et al., 2014) or implement SIMD instructions (Ericson,
2004)

intersection =(min(A1x, A2x) ≤ max(B1x, B2x))&&

(min(A1y, A2y) ≤ max(B1y, B2y))&&

(min(A1z, A2z) ≤ max(B1z, B2z))

(1)

The AABB volume’s drawback is that it is always aligned
to the axis, making accurate tests impossible for rotated
objects. To overcome this issue, an Oriented-Bounding-
Box (OBB) can be used. An OBB is characterised by a
centre point (c⃗), a local rotation for each axis (ux⃗y⃗z⃗), and
halfwidth extents for each axis (e⃗). The simplest OBB
intersection test employs the Separating Axis Theorem
(SAT), which projects objects onto an axisL and determines
whether they are separated by comparing the sum of their
projected radii to the distance between the projection of
their centre points (Ericson, 2004). Simply put, the SAT
test places a separating hyper-plane between objects. If
this can be done without intersection, the objects do not
intersect, as illustrated in Figure 1.
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Figure 1: Two OBBs projected onto axis L, they are only separated
if the sum of their projected radii is less than the distance
between their projected centres (Ericson, 2004).

OBB intersection tests require 15 axes to be tested (Huynh,
2009), which include:

Ax Ay Az

Bx By Bz︸ ︷︷ ︸
6 box faces

Ax ×Bx Ax ×By Ax ×Bz

Ay ×Bx Ay ×By Ay ×Bz

Az ×Bx Az ×By Az ×Bz︸ ︷︷ ︸
9 cross-products between faces

(2)

The Gilbert-Johnson-Keerthi (GJK) algorithm is capable
of testing for intersections between any convex object
with varying vertices. It calculates the Euclidean distance
between two polyhedra by using the Minkowski Differ-
ence (equation 3) and determining the separation distance,
which is the distance betweenM and the origin O (Gilbert,
Johnson, and Keerthi, 1988). If the origin is inside the
Minkowski Difference, the objects intersect. However, the
algorithm doesn’t explicitly compute the difference; it sam-
ples the difference point set using a support mapping func-
tion defined in equation 4, which returns the furthest point
in a specified direction. The GJK algorithm creates a con-
vex simplex Q from a total combination of dimension+ 1
points from M on each iteration. It updates the simplex
on each iteration and terminates when the origin is inside,
indicating an intersection (Van Den Bergen, 2001).

M = A⊕B = {a+ b : a ∈ A, b ∈ B} (3)

s(M,d) = max(v · d : v ∈ M) (4)

The algorithm proceeds as follows:

1. Initialise Q with s(M,−d), with d being the direction
vector pointing from A to B.

2. Repeat (normally for a fixed number of iterations):
(a) Compute the support point p of M in the direc-

tion d using s(M,d).
(b) If d · p ≤ 0, terminate and return no intersection.
(c) Add v to Q.

(d) Perform a reduction step to ensure that Q has at
most dimension+ 1 points.

(e) If Q contains O, terminate and return intersec-
tion.

(f) Compute a new search direction d towards O
from Q.

A subroutine is used to check for the position of the origin,
depending on the number of points in the simplex. This
subroutine employs a line (2 points), triangle (3 points),
or tetrahedron test (4 points) that only uses dot products
and does not require vector normalisation, making it a
very fast process (Muratori, 2006). The subroutine also
updates the direction, meaning fewer steps in the final
implementation. Note that it’s impossible to have just one
point in the simplex as before this subroutine is invoked a
minimum of two must be added.

Figure 2: The four states of the GJK simplex (Montanari, Petrinic,
and Barbieri, 2017). 2a being a point, 2b a line segment,
2c a triangle, and 2d a tetrahedron.

The Expanding Polytope Algorithm (EPA) is used to calculate
the penetration depth and MTV of the intersection (Van
Den Bergen, 2001 and Cameron, 1997). It uses the final
simplex generated by GJK and finds the closest point on
its boundary to the origin. EPA does this by expanding the
simplex and subdividing its edges with new vertices using
the following steps:

1. Find the edge of the simplex that is closest to O.
2. Compute the support point p of M in the direction d

that is normal to the edge (i.e. perpendicular to it and
pointing outside the polygon), using s(M,d).

3. The edge is split by adding this support point to it,
which forms a new tetrahedron.

4. Repeat these steps until the dot product of the vec-
tor with the last search direction is greater than a
threshold, which indicates very little change.

5. Once the algorithm converges, the MTV and the pene-
tration depth can be obtained.

3 Method

3.1 Vulkan & The Rendering Pipeline

The rendering pipeline is set up using the Vulkan graph-
ics API, which allows full control over the GPU. Vulkan
has the concept of a Render Pipeline, this object holds all
the shaders and information on how something should
be rendered. The renderer comprises various pipelines to
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render different game elements, such as sprites, meshes,
and the user interface (UI). Some of these pipelines will
be discussed in later sections in further detail.

Render systems create pipeline configuration structures
and submit them to the renderer, which sorts them based
on Christer Ericson’s method, where a 64-bit key is split
up to represent multiple render categories and then sorted
based on these values (Ericson, 2008). Figure 3 shows the
encoded pipeline handle as it’s laid out in memory.

Figure 3: The encoded 64-bit pipeline handle. Pipelines are sorted
by the values present in this handle. The numbers at
the bottom represent the number of bits each segment
utilises.

The renderer has four render queues, with the opaque and
transparent ones being the most important. The renderer
ensures that the correct pipeline is rendered in the ap-
propriate queue to maintain the order of rendering, for
example, transparent objects are rendered on top of opaque
ones. Also, pipelines are bound only once to the render
pass, which offers a slight performance advantage. Once
added, pipelines are sorted only once; therefore, during
gameplay, the pipelines are rendered in the most optimal
way possible.

Debug gizmos are essential during development to quickly
inspect hidden objects in the scene. A pipeline that renders
box colliders in the scene was implemented, as shown in
Figure 4. This pipeline renders lines instead of triangles.

Figure 4: OBB collider gizmos. Green boxes are colliders, and blue
are triggers.

3.2 User Interface

The UI is rendered to an offscreen texture in a separate
render pass which is only submitted when the UI has been
changed. This offscreen texture is essentially blit on top of
the main render in every frame. This increases the frame
rate as the UI is not unnecessarily redrawn when it remains
the same.

Unfortunately, there is no automatic way of detecting a
change in the UI, the SetDirty() function is invoked manu-
ally when there has been a change which triggers a render
on the next frame.

3.3 Sprites

Sprites in the game always face the camera, achieved by
updating the view-model matrix before rendering, this is
known as billboarding (JEGX, 2014 and Lengyel, 2019).
An optimisation to the original method proposed by Jegx
is to perform this once per mesh on the CPU rather than on
every vertex in the shader stage. The code below computes
the World View Projection (WV P ) matrix that is passed
to the vertex shader to transform each vertex; it uses the
model matrix (M) of the mesh, and the camera’s view (V )
and projection (P ) matrices.

1 mat4x4 tmpMat = V * M;
2
3 if (billboardType != BillboardType :: DISABLED)
4 {
5 tmpMat [0][0] = 1.0f;
6 tmpMat [0][1] = 0.0f;
7 tmpMat [0][2] = 0.0f;
8
9 if (billboardType == BillboardType :: SPHERICAL)

10 {
11 tmpMat [1][0] = 0.0f;
12 tmpMat [1][1] = 1.0f;
13 tmpMat [1][2] = 0.0f;
14 }
15
16 tmpMat [2][0] = 0.0f;
17 tmpMat [2][1] = 0.0f;
18 tmpMat [2][2] = 1.0f;
19 }
20
21 mat4x4 WVP = P * tmpMat;

Listing 1: Update the view-model matrix to be billboarded,
depending on the sprites type.

Sprites with transparency caused image artefacts when
rendered out of order (see figure 5a). Sorting the sprites
based on distance from the camera and rendering them
back-to-front solved the issue, this is formally known as
the Painter’s Algorithm. Although, this algorithm has draw-
backs such as not handling overlapping sections correctly.
Fortunately, it didn’t affect the game since it only used
billboarded sprites.

(a) Before sorting sprites. (b) After sorting sprites.

Figure 5: A comparison image of before (5a) and after (5b) sorting
sprites to solve transparency issues.

To create the illusion of 3D objects, sprites are stored in
a texture array, where the following equation determines
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which texture to currently render based on the player’s
position. Index 0 is chosen when the player is in front
of the object, and the last available index for when they
are behind. Where I is the chosen texture index, D⃗ is the
direction to the player, F⃗ is the forward direction of the
object and C is the texture count.

d = (D⃗ · F⃗ )

I = ((d+ 1.0)0.5)C
(5)

Since the texture index is only computed for one side, the
texture must be flipped when the player is on the other side.
To achieve this, the x/u texture coordinate is multiplied
by either 1 or −1 using the following equation:

⃗cross = F⃗ × D⃗

u multiplier =

{
1.0, if ( ⃗cross

∥ ⃗cross∥ )y > 0.0

−1.0, otherwise
(6)

(a) (b) (c)

Figure 6: The rotating "3D" sprites at different angles.

3.4 Entity Component System

An Entity Component System (ECS) is a performance-
oriented system for organising game entities and their
data, due to its efficient memory usage, data locality, and
cache coherency (Fabian, 2018).

There is no entity. Instead, entities are IDs to an implicit
collection of components. The entities are never updated,
but rather components that are associated with that entity
are.

Components are just structures of data that are linked
to entities through managers, which use a data structure
called a Sparse Set consisting of two arrays; one sparsely
packed and the other densely packed. The dense array
holds components for all entities back-to-back, while the
sparse array uses the entity as an index to store the index
of its associated component stored in the dense array. A
sparse set enables quick O(1) access for adding, removing,
looking up, and clearing the set, and O(n) for iteration
(Manenko, 2021). Updating each component type at a
time, instead of updating all components attached to an
entity, improves cache utilisation as components are stored
in a densely packed array. The sparse set also maintains
random reads/writes from a specific entity’s view.

Systems are implemented as loops that perform behaviour
and logic on one or a set of components. They define how
different components act together and do not hold any
data themselves.

3.5 Physics & Collisions

SAT was initially used for OBB intersection tests, which pro-
duced a simple yes/no answer for box intersection. How-
ever, as mentioned in the Related Work section, more in-
formation is needed to resolve the intersection. Therefore,
GJK replaced the SAT algorithm, supplemented by EPA to
calculate the MTV, which is used in the collision resolution
step.

However, there are some issues with the implementation
of the GJK and EPA algorithms. In rare cases, a fifth vertex
is added to the simplex when there should only ever be a
maximum of four, the issue is not fatal to the application
but means some collisions are ignored. Additionally, the
EPA algorithm may fail to converge, meaning there aren’t
enough iterations to solve for the MTV. However, one poten-
tial solution is to increase the number of iterations, which
would come at the expense of performance.

The ray-to-AABB method described in Real Time Collision
Detection was used to implement raycasting, which utilises
a test against a Kay-Kajiya slab volume (Ericson, 2004).
To support an OBB, modifications were made to transform
the ray into the box’s local coordinate space and apply the
object’s rotation matrix to the box extents.

Basic Physics Layer support was implemented using a bit
flag, which allows colliders/triggers to be tagged as a spe-
cific layer. When performing physics tests such as object
intersections and raycasting the system can ignore any
colliders using the following check:

1 #define BITFLAG_HAS_FLAG(bits , flag)
2 ((( bits) & (flag)) != 0)

Listing 2: Macro that checks if a bitfield has a certain bit set.

3.6 Audio

The in-game sound effects and music are loaded from wav
files and implemented using the XAudio2 library. XAudio is
a low-level library for interfacing with the audio hardware
and managing sound processing and mixing (Microsoft,
2021).

To load wav files, the online specification was followed to
parse the raw binary and locate the necessary data chunks.
However, an endianness problem was encountered, which
was resolved by converting everything to big-endian when
trying to compare values.

A simple system for playing one-shot sounds and looped au-
dio was implemented. This system loads the audio buffers
from the wav file, creates virtual voices (which manage
audio playback in the XAudio2 library), and submits the
buffers when requested. To loop sounds, the LoopCount
variable on the buffer options is set before submitting it to
the voice.
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Figure 7: In-game door with collider and trigger gizmos.

3.7 Gameplay

Doors utilise raycasting to detect player interaction, when
a player interacts with a door it opens using a simple linear
interpolation and remains open until they leave the trigger
area. See figure 7 where the green wireframe gizmo is the
door collider which the player must interact with, and the
blue wireframe gizmo is the trigger area.

Doors can be locked and require a keycard of the correct
colour to open, this was implemented using bit flags. This
approach uses one 32-bit unsigned integer to track which
types of keycards the player has and a simple bit check to
determine if the player has one of a certain type; which is
implemented using the macro in listing 2.

Pickups rely on the collision system described earlier, when
the player is colliding with an item it is picked up and
updated on the UI.

The project replicates both types of weapon from the orig-
inal Doom game: hitscan and projectile. Each hitscan
weapon has unique features, such as the shotgun firing
seven separate rays with a slight offset to simulate a spread,
and the chaingun and pistol using one raycast but with
different firing rates. The punch also uses raycasting but
with a short range, only hitting enemies close to the player.
Projectile weapons spawn a new entity that serves as the
projectile and moves at a certain speed in the direction
the player was facing when fired. When the projectile in-
tersects with an enemy, they take damage. There is very
little variation between projectile weapons except for the
projectile texture and their firing rate.

4 Future Work

One potential area for improvement and future research
involves enabling instancing onmeshes, which would result
in increased performance. This approach could also be
extended to the texture system, whereby the loading of
the same texture multiple times would use the already
preallocated memory on the graphics card, rather than
reallocating memory each time. This approach could make
a huge improvement to the UI by reducing the number of

textures required for each ammo counter from 30 to 10
and eliminating the need for an astronomical 240 total
textures across the 8 counters.

Putting together the level was a very time-consuming task,
with the addition of a level editor, the designer could see
what changes they were making in real-time and rapidly
update them without constantly reloading the application
or messing around with numbers in code, which is a huge
hassle.

The audio system lacked support for advanced effects,
fades, and mixing. To improve the audio system, imple-
menting the ability to blend and fade between clips would
be beneficial. Currently, changing music tracks involves
stopping the current one and starting the next, which could
be improved with this feature.

AI is a major area of game development and wasn’t ex-
plored in the project, future work could be done on re-
searching how to make enemies traverse the map efficiently,
detecting the player and have advanced behaviour.

5 Evaluation

Compared to the original Doom game, this project shows
visual discontinuities, such as varying sprite pixel sizes
within the game world as they are all scaled differently.
However, the UI remains fairly consistent. With the absence
of hardware limitations, this project can display a wider
range of colours at a time compared to the 256 that the
original game could. Figure 8 compares the project with
the original Doom; the project lacks lighting while the
original game includes basic shading effects.

(a) (b)

(c) (d)

Figure 8: Figures 8a and 8b are screenshots of the final project.
Figures 8c and 8d are screenshots from the original Doom
game.
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Figure 9: A single frame call stack graph.

Figure 10: A call stack graph for updating the ECS during one frame. Zoomed in from figure 9

Figure 9 shows a single frame call stack using the Intel
VTune profiler during normal gameplay. Multi-threading
the renderer could be a significant optimisation as 48.7% of
application time is spent recording and submitting render
data to a queue, with almost half of that time spent on
submission and waiting. By performing this task on another
thread, the game logic could continue while waiting for
the render data to submit, potentially improving overall
performance.

Focusing just on the game logic (figure 10), which took
about 18.1% of application time, there are clear bottlenecks
for performance. The function Math::CreateTRSMatrix is
called multiple times per frame and seems to be taking up
most of the frame time. In fact, a singular invocation of
this function takes up 2.8% of application time which is as-
tounding compared to the 1.4% of time the GJK algorithm
takes to perform intersection tests between the player and
every collider in the scene!

6 Conclusion

To summarise, the created Doom slice implements many of
the primary gameplay features and technical systems/al-
gorithms, although they are not perfect and could benefit
from further bug fixing and refinement, such as the col-
lision resolution system. There is plenty of future work
that could be achieved, with many of the engine systems
only implemented in a basic state. However, given the
substantial scope of the project, it is remarkable to see var-
ious systems working together to produce a final playable
product.
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